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Preface

The requirements for simulation of weather phenomena, such as total cloud

cover, layered cloud cover, cloud-free line-of-sight, areal extent of temperature,

moisture content of the air, or snow depth, have been increasing along with the

questions about the likelihood or possibility of events and combinations of events.

This report, one of an ongoing series, presents the three dimensional version

of the Boehm sawtooth-wave model (3D-BSW), conceived by the co-author. This

mdel has been modified and expanded since the last report.

In this effort we have been assisted greatly by our Branch Chief, Donald D.

Grantham, our former associate Charles F. Burger and recent associate

Capt. Oliver Muldoon. We also acknowledge the guidance and recommendations

of USAF-ETAC, especially of Capt. Dewey Harms, who has made valuable con-

tributions to the subject. We are especially indebted to our secretaries

Mrs. Helen M. Connell and Mrs. Carolyn Fadden for their excellent copy of the

report, no easy task.
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The 3D-BSW Model Applied to Climatology
of Small Areas and Lines

1. INTRODUCTION

A previous report1 describes the procedures for the simulation of a spatial

set of conditions by use of the three-dimensional Boehm Sawtooth Wave Model

(3D-BSW). The present report describes the use of the model for estimating the

climatic probability of spatial events by algorithms based on repetitive simulations.

Special attention is given to cloud-cover probabilities. Fields of clouds are

simulated stochastically, incorporating areal sizes and lineal separations of the

clouds, both in the horizontal and in the vertical. Using these simulations,

synthetic climatology is developed to estimate the likelihood of events such as

an overcast of clouds covering a floor space of varying dimensions or the

probability of a clearing in the clouds. One special problem addressed is

the probability of a cloud-free interval along a line of travel.

(Received for publication 7 August 1987)

1. Gringorten, 1.1. (1984) A Simulation of Weather in 3D Space,
AFGL-TR-84-0267, ADA 155221.
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The approach, as in previous reports, 2,3.4 is to develop a model that will

depict a synoptic situation that statistically resembles the natural state of the

weather. In many repetitive applications of the model the correlation of events

at points of known distance apart should resemble the natural-state correlations.

Additionally, a multitude of applications of the model should yield frequencies of

events that will approximate their climatic probabilities.

In the previous report a set of isopleths of rainfall, in one actual 24-hr

period in New England, was shown as an example of the kind of field, with all its

variability, that could be simulated by a model. The 3D-BSW model is the basis for

a Monte Carlo method to produce climatological probability estimates. To illus-

trate this purpose, Figure 1 gives such estimates of the probability of 24-hr

rainfall in New England, in reasonable agreement with the results of surveying

.January 24-hr amounts, in 10 years at some 140 stations through New England.

As Figure 1 shows, the single-station frequency of no rain is 63 percent; that of

rain not exceeding 13 mm (1/2 inch) throughout Massachusetts is 84 percent, and

is accurately estimated as such by the model. The 3D-BSW model extends the

estimates to varying areal sizes, and shows, for example, that in 1000 km 2 the

probability of no rain is 57 percent. Or, the probability of rain, of any amount,

somewhere in 1000 km 2 is 43 percent. Also, somewhere in the 1000 km 2 area

there is an 8 percent probability of a 13-mam (1/2 inch) rainfall, and so on.

(One exception to the application of the model is on Mount Washington, N. H.,

where the precipitation is heavier than in the rest of the region. )

As in preceding reports, model development is done with the equivalent normal

deviate (END), symbolized as y. of the meteorological variable (X). The trans-

formation, back and forth, between X and y, is accomplished through the cumulative

probability, Pr(X) or Pr(y). Symbolically,

X - Pr(X) = Pr(y)- y . (1)

Several methods of accomplishing this transformation have been mentioned and

illustrated in previous reports. Whatever method is adopted, a one-to-one relation

will exist between y and X, or between y and Pr(X).

2. Gringorten, 1.1. (1979) Probability models of weather conditions occupying a
Line or an area, J. Appl. Meteorol., 18:957-977.

3. Whiton, R.C., Berecek, E. M., and Sladen, J.G. (1981) Cloud Forecast
Simulation Model, USAFETAC Scott AFB, IL 62225, USAFETAC/TN-81-004,
126 pp.

4. Burger, C. F., and Gringorten, 1.1. (1984) Two-Dimensional Modeling for
Lineal and Areal Probabilities of Weather Conditions AFGL-TR-84-0126,
ADA 147970, 58 pp.
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Figure 1. Showing the Frequency, at the X's of 24-hr January
Rainfall at a Typical New England Station (on the left-hand 2
ordinate); of the Maximum in Massachuset%.s, Area 21, 350 n 2

and in the Six-State New England Region, Area 169, 824 km
The solid curves are found by the application of the 3D-BSW
mrodel, with scale distance of 6. 22 kin. They show the
probability of no rain, of rain less than 13 mm (1/2 inch) and
rain less than 50 mm (2 inches). throughout an area (A)
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Throughout this work we assume the weather is stationary stochastic. While there

is much variation in the condition (X) from place to place, with level of elevation

and in time of day or season, it is assumed that the "true" average, median or

mode, and the true probability distribution of values remain unchanged with time

or era. Although this premise conflicts with the occasional declaration of changing

climate, it is acceptable in a human lifetime of climatic events, including extremes.

The problems and solutions, as presented herein, might also be viewed as a

generalization of the often-asked questions about joint frequencies or probabilities

of events, such as simultaneous cloud cover at two or more stations. This study deals

with the aggregate of events throughout a specified area, answering such questions as

the likelihood of consistently high values throughout the area or in a measurable fraction

of the area. That is. the 3D-BSW model is extended to estimate the probability of

events occurring in an area or given fraction of an area, or along a line.

2. THE 3D-BSW MODEL

With the 3D-BSW model, a value of the END (y) is obtainable at every point

in 3D-space. Care must be taken to modify the vertical measure (w') by

multiplying it by a factor q (= 50, say) to make the modified vertical measure (w)

comparable to the horizontal measure in the (u, v)-plane. Thus:

w = q.w' . (2)

2.1 Development

For the 3D-BSW model each formation of uniform sawtooth waves fills all of

three-dimensional space. (The waves do not move. ) Each wave formation has a

constant wavelength (A) that becomes a characteristic parameter of the model. The

wavelength may vary from tens of kilometers to hundreds of kilometers.

A parameter, called the scale distance, symbolized as r, is proportional to A.

In earlier work the scale distance was defined as the distance over which the

correlation coefficient is 0. 99. In the study of clouds, r was found to be approxi-

mately 1 km when A was several hundred kilometers. In the 3D-BSW model, we

set the ratio of A to r at

A = 256 r kn. (3)

This equivalency relationship permits us to use the scale distance of the earlier

Gringorten Model B 2 as the scale distance of the 3D- BSW model (see Section 2. 4. 1

for amplification).

4



2. 1.1 ELEMENTS NEEDED FOR A SINGLE
WAVE FORMATION

Consider one wave formation in the 3D-space, oriented so that the flat surface

or plane that contains one constant phase is parallel to the plane surface ABC

(Figure 2). Let X(u. v, w) be a point on the plane surface (ABC) with coordinates

(u, v. w). Let P be the closest point on this plane to the origin 0 (0, 0, 0). Then the

line OP will be perpendicular to the plane, oriented by angles (a. j3 ,) ) between

OP and the three axes. If the length of OP is D, then from solid geometry the

equation of the plane containing P and X is

u. cosa + v. cos 3 + w. cos = D . (4)

Let X be the angular measure from the U-W plane to the vertical plane containing

OP. (If the W-axis were the earth's axis, X would be longitude. ) From spherical

triangles (Figure 3),

cos a = sin cosX

(5)
cos A = sin . sin A

from which

2 2 2
cos a + cos + cos = 1 (6)

Or, one of (a. P, f, ) is determined when the other two are given.

Let the leading edge of the middle wave of a wave formation miss the origin

by a distance H, and define

h = H/A . (7)

There are three degrees of freedom in the random choice of a wave formation.
We choose h by random process, thus using one of the three degrees of freedom:

0 <h : 1.0 , (8)

h being uniform on (0, 1).

The remaining two degrees of freedom must be used to obtain values for

(a. P ,y ). We have two alternative procedures for doing this. While one is a more

direct procedure, the other will save computer time.

5
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Figue 2. Illustration of a Plane (ABC). The point (X) is considered
to beon this plane surface. Point (P) is such that OP is the shortest
distance from the origin to the plane, and has angles (a. P.-yv) with the
U-, V-, W-axes. The projection of OP onto the U-V plane has angle A
with the U-axis

2.1.2 THE LAMBDA METHOD FOR OBTAINING
(a, . )

Consider the sphere with radius (OP). (Figure 3 shows one octant.) The shell
2has a total area of 4irD . An element of the area (dA) is given by:

6



Figure 3. Illustration of One Octant of the Sphere Centered
at the origin (0). The line (OP) of length (D) has angular
sides (a,P, -y) with the three axes (U. V. W) and lies in the
plane that makes angle (X) with the (U - W) plane

dA =(D. d.y (D. sin-y. dX)

(9)
2 d-cos

In the random selection of the wave formation, the point P should have the same

probability of appearing in one element of area (DA) as in any other on the sphere.

Thus we choose two random numbers ( R.), each between 0 and 1, and set

cos = 1D -1. tomake -1.0 cos 1.0 (10)

7



where cos v is uniform on (-1. +1)

A = 2uRX, to make 0.0 <A 27T

where X is uniform on (0, 27T)

Equations (5) give cos a and cos 3, which, together with cos y define D

[Eq. (4)] for each point (u, v0 w) in the 3D space. We will refer to this as

Alternative (1).

2.1.3 THE ACCEPTANCE-REJECTION METHOD FOR
OBTAINING (a, 3, y )

Choose three random numbers (R UB R v, R ) between 0.0 and 1.0, and set

r = R - 1/2 to make -1/2= 5 r =! 1/2,

r = R - 1/2 to make -1/2 f r <= 1/2 0 (11)

rw = Rw - 1/2 to make -1/ 2 =f< rw w 1/2.

The point with coordinates (r u, rv , rw) will lie within a unit cube. To assure that

any one direction of the line from the origin to (r u, rv o rw) will be as likely as any

other direction, we impose the restriction:

(OP')= %r2 + 2 + 5 1/2 . (12)

If the length (OPt) is greater than (1/2), then we reject the three random numbers

and try another group of three random numbers. The probability that the set

(R u t Rv , Rw) will be rejected will be [1 - 4/3v(1/2) 31 = 0.476. On the average,

this alternative procedure requires the generation of (3/0. 524) = 5.7 random

numbers per wave formation for orientation plus an additional random number

for phase.

cth the first acceptable set of random numbers, we find

14 cos a a r u /(OP')

cos = r/(OP') , (13)

cos r =rw/(OP') ,

8



which then define D [Eq. (4)] for each point (u. v, w) in the space. We will refer

to this method as Alternative (2).

2.1.4 COMPARISON OF ALTERNATIVES FOR

GENERATING WAVES

'Mile Alternative (2) requires, on the average, the generation of 6. 7 random

numbers, as opposed to three for Alternative (1), it does not require the deter-

mination of a sinusoidal function, that consumes more computer time than finding

the random numbers. There is another attractive feature in Alternative (2): it

can be extended to higher dimensions than the three for space, to include an addi-

tional dimension for time or to introduce additional influences on the wave forma-

tion. (This will be explored in later reports. ) However, care must be taken to

eliminate the selection of absolute values for (r u , r v , r w ) that will make (OP') too

small for computer operation.

2.1.5 WAVE HEIGHT

The wave height (x) of one wave formation, at a point (u, v, w) is given by

x = FRA (h + D/A) (14)

where FRA denotes the fractional part of the bracketed quantity. While x (u, v, w)

is termed "wave height", it is difficult to visualize in 3D space. For our purpose,

it is acceptable as a property of the wave formation at the point (u, v, w), and is

defined, mathematically and unequivocally, by Eq. (14). Where x' = h + D/A, x'

can be negative. The symbol INT(x') is used for the integer part of x'. If, as in

FORTRAN, this is taken to be the integer part with its sign, then the wave height

(x) at a point (u, v, w) is given by

x = x' - INT(x') when x' _-- 0 ,

= x' - INT(x') + 1 when x' < 0.

If, as in BASIC, the symbol INT(x') is taken to be the next lesser whole number,

then, simply, the wave height is given by

x= x1' - INT (x') for all x' .

The wave height (x) varies uniformly from 0 to 1. 0 in the 3D-BSW model.
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2.1.6 GENERATING MULTIPLE WAVE FORMATIONS

The above procedure produces one wave formation and one set of values for

cos a. cos P cos Y,. and h. Repeated L times, there will be L wave formations.

with L wave heights (x ,. I = l(1)L) at (u, v. w) whose average wave height

L
= xi (u, v, w) (15)

i= 1

will have a mean of (1/2) and variance of (I/12L), and will bave an approximate

normal (Gaussian) distribution. For sufficiently large L. the END (y) at

X (u, v. w) is given, practically, by

y (u. v. w)= %['. (x - 1/2) . (16)

The END (y) can thus be calculated for any point (u. v. w) in the 3D space.

If. for convenience, L is made equal to 12. then

12

y(uv, w)= 2 xi(u. v, w) - 6. (17)
i=1

For a single simulated field, a minimum of 36 random numbers using Alternative (1),

or by Alternative (2) an expected maximum of 80 random numbers, are needed to

generate all values of the END (y) at all points in the three-dimensional field.

2.2 Simulation or Depiction

To obtain a picture in a horizontal surface, within, say a square 200 km to the

side, we keep w constant (conveniently zero), and compute y (u, v, w = 0) for as

niany points (u, v, w= 0) in the square as we wish. Likewise we can generate a

vertical cross-section by keeping u constant, or v constant, or by keeping a linear

combination of (u, v) constant. For an overall procedure to produce a field of

values, see Appendix A.

Samples of simulated cloud structure are given in the previous report1

(October 1984). one in a horizontal plane representing a cloud cover, and four

other examples of clouds in a vertical cross-section.
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2.3 Probabilities - Descriptdon of the
Monte Carlo Method

The above-described procedure produces END-values in all three dimensions,
or in the two dimensions of a horizontal surface or vertical cross-section, or along
a line of travel or line of sight. Suppose a field of END-values (y) is generated in
a horizontal square of area A. Among the many values of y in the square there will
be a maximum, ymax' also a value that will be the (9/10)ths maximum, also
(8/10)ths maximum, and so on. Taking any single value, y0 (say = 0. 4). as a
threshold, there will be a certain probability that it will be the maximum in the
area and will not be exceeded in the entire square. There will be a higher prob-
ability that it will not be exceeded in all except (I/10)th of the area, still higher
in all except (2/10)ths of the area, and so on. Lastly there is the probability
that is 1.0 minus the probability that it will be exceeded everywhere, when it will
be the minimum in the square. The areal climatology of a region should consist
of information on such probabilities. The same kind of climatology could be
obtained for events or conditions along a line.

At this stage we must admit to an unfulfilled wish. An analytical solution is
desirable to determine the probability distribution of the maximum in a space,
similar to the solution for the maximum in an Ornstein- Uhlenbeck temporal
process. 5,6 Not having such an analytical approach, we have resorted to approxi-
mate solutions by the Monte Carlo method.

2.3.1 MULTIPLE FIELDS OF ENDs

In an area (A) or on a line (L) a finite number of END-values can be found by
the above-described procedures. For a single such field, a maximum value of y,
the above percentiles and minimum value can be determined. The greater the
number of y-values that are calculated, the closer will be the rmaximum to the true
maximum of the area or the line. Now, let us generate many such fields or
"snapshot" pictures (M = 25, 000, say) of area (A) or line (L). There will be M
trial values of the maximum in A or L. These values collectively constitute a
frequency distribution of the maximum, and may be regarded as a good approxi-
nation to the true probability distribution of the maximum. The same will be true
for all percentiles and for the minimum.

5. Keilson, J., and Ross, H.F. (1975) Passage time distributions for Gaussian
Markov (Ornstein-Uhlenbeck) statistical process, Selected Tables in
Mathematical Statistics, 3:233-237.

6. Gringorten, 1.1. (1982) The Keilson-Ross Procedure for Estimating Climatic
Probabilities of Duraion of Weather Conditions, AFGL-TR-82-0116,
ADA 119860.
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2.3.2 TYPES OF PROBABILITIES DEFINED

For clarification in the following development, the symbol Po' is used for

probability of exceeuance of the value (X) at a single point. The symbol P0 , as

used herein, is the cumulative probability, and is the probability that X will not

be exceeded at a single point. That is,

P = (I - P') . (18)
0 0

It is assumed that P is the same for any point in the area or the line. The0

climatic probability of the weather condition defines P 0 , which, in turn, defines

its corresponding END (y 0 ). As mentioned in Section 1 there is a one-to-one

correspondence between the END (y) and the meteorological variable (x). A

threshold (X) such that x=< X has its corresponding value, y 0 , such that y:-yo.

The single-point END (y 0 ) will be negative when P < 1/2, positive when

P > 1/2. (For sky cover P is the cloud-free probability in a single direction.)
0 0

The symbol PA will be used for the probability of a fraction or less coverage of
2

an area. An example is the probability of 3/10 or less cloud cover in 1000 km

Coverage can also apply to the threshold of a continuous variable such as tempera-

ture. An example is the probability that 0. 25 of the area has temperatures below

freezing.

The symbol PL will be used for the probability of a fraction or less coverage

of a line segment. for example, the probability that along the route between

New York City and Washington, D. C., rain would occur 0. 33 or less of the distance.

Coverage is without regard to whether the rain occurred in one unbroken interval

or many small intervals as long as their sum is 0.33 or less of the total distance.

The symbol PI will be used for the probability that at least one interval some-

where along a line segment has weather continuously below the threshold (y ).

For example, suppose a helicopter flying through patchy fog can visually navigate

if no fog patch is greater than 1.5 kmn. What is the probability that there are one

or more fog patches greater than 1.5 km anywhere along a 200-km route? A

weather condition can be a specific kind of weather (for example, thunderstorm) or

all values exceeding (above or below) a specific threshold (for example, pressures

below 992 mb). Note that, when the interval is as long as the total line segment,

then PI is the same as PL for zero coverage.

A line interval (s') may be visualized as a window sliding along a longer line

of travel (T); at any position of the window, within s' there will be a maximum value;

the lowest of these maximum values is the threshold condition whose probability

(PI) we wish to find.
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2A Areal Coverae (PA)

The goal of this section is to find a satisfactory approximation for

PA (X, A, F, r) = PA (yo" A. F, r)

which is the probability that a weather condition (x) will not exceed the threshold

(X) (or the END (y) will not exceed y0 ), except in(F/10)ths orless of the area (A),

given the scale parameter (r). That is, 1-PA (y0 A, F, r) is the probability that

YO is the (F/10) highest value of y in the area (A).

If F = 0, then the threshold weather condition is exceeded nowhere in the area.

For example, what is the probability of no clouds anywhere in New Jersey, that is,

the state is completely clear?

If F = 10, then the threshold weather condition is exceeded everywhere in the

area. For example, what is the probability the relative humidity is above

80 percent everywhere in Iowa?

If 0 < F < 10, then PA is the probability that the threshold weather condition

is not exceeded except in a fraction of the area less than or equal to (F/10).

2.4.1 STANDARDIZED UNITS

At this stage of the development, we need to standardize our units. A square,

of area A (km 2), has side s' where

So = 1W.km (19)

The standardized distance (s) is

s = s'/r (20)

where r is the scale distance. Or

r = s'/s km .

The scale distance (r) had been defined, in earlier work, as the distance over

which the correlation coefficient is 0. 99. In the study of clouds, (r) was approxi-

mately 1 km when the wavelength was found to be several hundred kilometers.

Arbitrarily we have chosen, for standardization, the ratio of A to r at 256:1. That

is, A = 256 r km in the 3D-BSW model, making the two parameters (A and r)

alternatives to each other.
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In previous work with New England 24-hr precipitation, we found the scale

distance equal to 5 to 10 km (6. 22 km in the example of Figure 1). For radar

echoes on a PPI-scope the scale distance ranged from 1 to 2 km in summer.

2-1/2 to 4-1/2 km in winter. The following sections will present typical results

for sky-cover data.

For convenience, the term (z) is introduced to serve as a dimensionless

substitute for A or s', such that

z = fn(s'/r)/In 2 = In(N/A/r)/In 2 (21)

or

s = 2 z where s = s'/r (22)

or

A= (r. 2 z) 2

With the parameter A or r given, there will be a one-to-one correspondence

between z and A. Symbolically

PA(y 0 A, F, r) = PA(y o f z, F).

2.4.2 GENERATING MAPS OF END-VALUES

A computer program was compiled to provide the Monte Carlo estimates of

probabilities: PA (y0 , z, F) for yo = -4.0(0.5)4.0, z = 0(1)8, and F = 0(1)5.

Corresponding to the nine choices for z, nine square areas were selected for the

study, that had standardized sides:

s = 2z = 1, 2, ... 256

for which

A = 1, 4 ..... (256)2 for r=l).
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By the method described on the previous page, and as described in the previous

report, a field of y-values was generated to simulate each map of a total of

25, 000 maps. (In applying Eq. (14) the parameter was set at A = 256 km.) Each
2square was gridded to yield (21) = 441 grid points at which the y-values were found,

which were then ordered by size. The largest value was assigned to the distribu-

tion for y (max). The (nF)th largest value from the top, where

n F = TRUNC 1441F/101 + 1, F = 1(1)5 (23)

was assigned to the distribution of the (F/10)th highest value of y in the area (A).

The (F/10)th lowest y-value should be comparable to the (F/10)th highest with

the sign of y reversed. Another y-value, therefore, was obtained by selecting the

(n F')th value of y where

nF1 = 441 - TRUNC 1441F/101 , F = 4(-1)0 (24)

and, after changing the sign of y, assigning it to the distribution of the (F/10)th

highest of y in the area (A).

The six probability distributions of PA for the six values of F = 0(1)5 were

approximated by the frequency distributions of the y-values in the 25, 000 maps.

The results, in nine columns for the nine z's, in order of increasing END (y ),
are shown in Tables 1(0) to 1(5), each table for one value of F.

These values were plotted in six charts [Figures 4(0( to 4(5)], and curves

were drawn, with smoothing at the extremes. Each chart, one for each value of

F = 0(1)5, has probability along the ordinate, z along the abscissa. Each curve

on each chart is drawn for one value of y 0 = -3. 5(0. 5)4. 0]. Each chart shows

the cumulative probability of y0 that will be exceeded in only (F/ I0)ths of the area.
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Table 1(0). Estimates of the Probability Distribution of PA (y o z, F = 0) Where

y is the Maximum in the Area A = (r. 2z) , z= 0(1)8, r is the Given Scale

Distance (km). The sample size was 25, 000 maps

z

YO 0 1 2 3 4 5 6 7 8

-3.5 0.00009 0.00015 0.00011 0.00001 -- - -

-3.0 0.00097 0.00101 0.00081 0.00059 0.00027 - - -

-2.5 0.00489 0.00481 0.00401 0.00251 0.00123 0.00013 - -

-2.0 0.0216 0.0198 0.0162 0.0106 0.00525 0.0075 - - -

-1.5 0.0611 0.0581 0.0486 0.0376 0.0212 0.00623 0.00033 - -

-1.0 0. 151 0. 143 0. 127 0. 102 0.0643 0.0263 0.00289 - -

-0.5 0.298 0.285 0.260 0.220 0.155 0.0798 0.0171 0.00009 -

0 0.483 0.471 0.443 0.390 0.306 0.190 0.0637 0.00223 -

0.5 0.674 0.663 0.637 0.590 0.503 0.368 0.183 0.0224 0. 00001

1.0 0.828 0.819 0.799 0.760 0.693 0.571 0.374 0.110 0.00157

1.5 0.9298 0.9234 0.9132 0.890 0.848 0.765 0.605 0.313 0.0332

2.0 0.9749 0.9718 0.9677 0.9591 0.9387 0.897 0.802 0.590 0.227

2.5 0.99377 0.99275 0.99059 0.9880 0.9814 0.9666 0.9260 0.827 0.598

3.0 0.99871 0.99833 0.99771 0.99697 0.99511 0.99095 0.9794 0.9489 0.868

3.5 0.99975 0.99965 0.99965 0.99941 0.99905 0.99799 0.99581 0.9888 0.9728

4.0 0.99993 0.99995 0.99995 0.99987 0.99977 0.99965 0.99929 0.99853 0.99627

4.5 - - - 0.99995 0.99995 0.99995 0.99991 0.99983 0.99967
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Table 1(1). The Probability Distribution of PA (vo z, F = 1). Where yo is the
z(1/10)th Maximum of the Area (A) Given by 4/A= r. 2 . The sample size was

25, 000 maps

Z

YO 0 1 2 3 4 5 6 7 8

-3.5 0.00015 0.00015 0.00017 0.00001 -...

-3.0 0.00097 0.00115 0.00103 0.00069 0.00053 0.00009 -

-2.5 0.00501 0.00519 0.00475 0.00329 0.00221 0.00029 0.00003 -

-2.0 0.0222 0.0209 0.0185 0.0142 0.00929 0.00383 0.00039 -

-1.5 0.0628 0.0612 0.0549 0.0460 0.0328 0.0166 0.00331 - -

-1.0 0.154 0.149 0.138 0.123 0.0924 0.0569 0.0190 0.00067

-0.5 0.302 0.294 0.277 0.251 0.206 0.144 0.0697 0.00787

0 0.491 0.482 0.465 0.430 0.376 0.297 0.193 0.0616 0.00035

0.5 0.680 0.673 0.655 0.626 0.578 0.499 0.389 0.223 0.0239

1.0 0.832 0.826 0.814 0.792 0.757 0.699 0.616 0.499 0.288

1.5 0.9319 0.9267 0.9204 0.9080 0.889 0.855 0.814 0.771 0.768

2.0 0.9758 0.9737 0.9712 0.9666 0.9597 0.9462 0.9334 0.9300 0.9680

2.5 0.99431 0.99341 0.99241 0.99057 0.9879 0.9844 0.9816 0.9872 0.99827

3.0 0.99877 0.99857 0.99835 0.99769 0.99713 0.99609 0.99603 0.99817 0.99997

3.5 0.99975 0.99967 0.99969 0.99965 0.99929 0.99941 0.99945 0.99985 -

4.0 0.99993 0.99995 0.99995 0.99995 0.99991 0.99989 0.99997 0.99995 -

4.5 - - - - 0.99995 - - -

17

N



Table 1(2). The Probability Distribution of PA (y 0 z. F = 2). where y 0 is the

(2/10)ths Maximum of the Area (A) Given by %]A= 2Zr

z

YO 0 1 2 3 4 5 6 7 8

-3.5 0.00019 0.00015 0.00017 0.00009 0.00001 - - -

-3.0 0.00107 0.00115 0.00111 0.00087 0.00077 0.00005 - - -

-2.5 0.00511 0.00537 0.00489 0.00385 0.00275 0.00091 0.00005 -

-2.0 0.0224 0.0218 0.0196 0.0168 0.0121 0.00643 0.00103 --

-1.5 0.0634 0.0630 0.0575 0.0518 0.0408 0.0246 0.00743 0.00035 -

-1.0 0.155 0.152 0.143 0.135 0.1101 0.0772 0.0372 0.00387 -

-0.5 0.305 0.299 0.287 0.267 0.234 0.184 0.118 0.00318 0.00007

0 0.493 0.487 0.476 0.451 0.413 0.356 0.279 0.150 0.00861

0.5 0.683 0.678 0.665 0.645 0.612 0.563 0.500 0.395 0.183

1.0 0.834 0.830 0.821 0.806 0.784 0.755 0.720 0.689 0.703

1.5 0.9330 0.9285 0.9243 0.9157 0.9051 0.888 0.882 0.891 0.9656

2.0 0.9761 0.9748 0.9726 0.9704 0.9664 0.9617 0.9620 0.9774 0.99865

2.5 0.99445 0.99383 0.99287 0.99189 0.99027 0.9896 0.99203 0.99683 -

3.0 0.99879 0.99863 0.99845 0.99821 0.99769 0.99743 0.99825 0.99973 -

3.5 0.99979 0.99975 0.99973 0.99977 0.99955 0.99965 0.99995 0.99995 -

4.0 0.99993 0.99995 - - 0.99993 - - - -

4.5 - - -
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Table 1(3). The Probability Distribution of PA (yo. z. F = 3), Where Yois the

(3/ 10)ths Maximum of the Area (A) Given by NA - 2 . r

z

YO 0 1 2 3 4 5 6 7 8

-3.5 0.00019 0.00015 0.00021 0.00009 0.00005 - -

-3.0 0.00111 0.00121 0.00113 0.00093 0.00089 0.00023 -

-2.5 0.00527 0.00553 0.00517 0.00443 0.00335 0.00153 0.00019 -

-2.0 0.02'7 0.0223 0.0206 0.0186 0.0150 0.00919 0.00235 0.00003 -

-1.5 0.0641 0.0634 0.0600 0.0569 0.0490 0.0329 0.0144 0.00107 -

-1.0 0. 158 0.156 0.149 0.143 0.126 0.0984 0.0589 0.0114 -

-0.5 0.307 0.304 0.295 0.281 0.258 0.221 0. 165 0.0734 0.00101

0 0.495 0. 492 0.484 0.468 0.444 0.407 0.355 0. 258 0.0600

0.5 0.685 0.682 0.673 0.662 0.642 0.615 0.585 0.546 0.493

1.0 0.836 0.833 0.828 0.817 0.806 0.794 0.789 0.810 0.9225

1.5 0.9333 0.9307 0.9276 0.9230 0.9168 0.9122 0.9200 0.9500 0.99665

2.0 0.9763 0.9754 0.9739 0.9739 0.9720 0.9723 0.9783 0.99285 0.99991

2.5 0.99455 0.99409 0.99317 0.99281 0.99213 0.99245 0.99575 0.99907 -

3.0 0.99879 0.99865 0.99853 0.99839 0.99813 0.99837 0.99923 0.99995 -

3.5 0.99979 0.99975 0.99975 0.99977 0.99971 0.99979 0.99995 -

4.0 0.99993 0.99995 - - 0.99995 - -

4.5 - - -
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Table 1(4). The Probability Distribution of PA (yo. z, F = 4), Where y is the

(4/ 10)ths Maximum of the Area (A)

z

y 0 1 2 3 4 5 6 7 8

-3.5 0.00019 0.00017 0.00021 0.00009 0.00013 0.00003 -

-3.0 0.00111 0.00123 0.00117 0.00107 0.00097 0.00029 -

-2.5 0. 00533 0. 00563 0. 00553 0. 00491 0. 00417 0. 00257 0. 00049 -

-2.0 0.0229 0.0228 0.0218 0.0204 0.0180 0.0123 0.00437 0.00025 -

-1.5 0.0645 0.0655 0.0632 0.0618 0.0559 0.0440 0.0238 0.00307 -

-1.0 0. 159 0. 159 0. 155 0. 152 0.142 0. 120 0.0848 0.0278 0.00003

-0.5 0.309 0.308 0.303 0.295 0.281 0.260 0.222 0. 136 0.0118

0 0. 498 0. 496 0. 492 0. 483 0. 472 0. 455 0. 429 0. 377 0. 225

0.5 0.687 0.686 0.682 0.675 0.671 0.660 0.656 0.673 0.781

1.0 0. 838 0. 836 0. 834 0. 829 0. 825 0. 824 0. 843 0. 888 0. 9853

1.5 0.9340 0.9319 0.9311 0.9285 0.9259 0.9308 0.9444 0.9791 0.99995

2.0 0.9765 0.9761 0.9759 0.9760 0.9759 0.9788 0.9865 0.99769 -

2.5 0.99455 0.99417 0.99353 0.99359 0.99393 0.99477 0.99787 0.99975 -

3.0 0.99879 0.99867 0.99857 0.99849 0.99859 0.99891 0.99975 - -

3.5 0.99979 0.99977 0.99975 0.99977 0.99971 0.99989 -

4.0 0.99993 0.99995 - - 0.99995 - -

4.5 - - -
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Table 1(5). The Probability Distribution of PA (yo z. F = 5). Where y 0 is the
(5/10)ths Maximum of the Area (A) Corresponding to Z = 0(1)8, A= 256

z
0 1 2 3 4 5 6 7 8

-3.5 0.00019 0.00017 0.00023 0.00011 0.00021 0.00009 -

-3.0 0.00119 0.00131 0.00121 0.00141 0.00113 0.00053 0.00007 -

-2.5 0.00539 0.00571 0.00613 0.00569 0.00487 0.00421 0.00115 0.00001 -

-2.0 0.0231 0.0234 0.0227 0.0225 0.0208 0.0162 0.00801 0.00085 -

-1.5 0.0654 0.0671 0.0656 0.0666 0.0642 0.0548 0.0378 0.00845 -

-1.0 0.160 0.162 0.160 0.161 0.157 0.146 0.117 0.0591 0.00147

-0.5 0.311 0.311 0.310 0.309 0.305 0.298 0.280 0.222 0.0606

0 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

0.5 0.689 0.689 0.690 0.691 0.695 0.702 0.720 0.778 0.9394

1.0 0.840 0.838 0.840 0.839 0.843 0.854 0.883 0.9409 0. 99851

1.5 0.9346 0.9329 0.9343 0.9333 0.9358 0.9452 0.9622 0.99153 -

2.0 0.9769 0.9766 0.9773 0.9774 0.9791 0.9838 0.99197 0.99913 -

2.5 0.99459 0.99427 0.99385 0.99429 0.99511 0.99577 0.99883 0.99997 -

3.0 0.99879 0.99867 0.99877 0.99857 0.99885 0.99945 0.99991 - -

3.5 0.99979 0.99981 0.99975 0.99987 0.99977 0.99991 --

4.0 0.99993 - - - - -

4.5 -...
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Figure 4(0). For the Graphical Solution of P (yo, z, F). the Probability That an
END (y) Will Exceed (yo) Only in (F/10) or Less of the Area (A) When Scale
Distance, r= 1. (This chart is for F = 0. ) The horizontal scale is for the
standardized measure (z) of the area [Eq. (21
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Figure 4(0). For the Graphical Solution of P (yo. z. F). the Probability That an
END (y) Will Exceed (yo) Only in (F / 10) or Less of the Area (A) When Scale
Distance, r= 1. (This chart is for F= 1.) The horizontal scale is for the
standardized measure (z) of the area [Eq. (21
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Figure 4(2). For the Graphical Solution of P (yo, z. F), the Probability That an
END (y) Will Exceed (yo) Only in (Ff10) or Less of the Area (A) When Scale
Distance, r= 1. (This chart is for F= 2.) The horizontal scale is for the
standardized rmasure (z) of the area [Eq. (2 1)1
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Figure 4(3). For the Graphical Solution of P (yo, z, F), the Probability That an
END (y) Will Exceed (yo) Only in (F110) or Less of the Area (A) When Scale
Distance, r= 1. (This chart is for F = 3.) The horizontal scale is for the
standardized measure (z) of the area (Eq. (21))
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Figure 4(4). For the Graphical Solution of p (yo, z. F). the Probability That an

END (y) will Exceed (y.) Only in (F / 10O) or Less of the Area (A) When Scale

Distance, r= 1. (This chart is for F = 4. ) The horizontal scale is for the

standardized measure (z) of the area JEq. (20)1

26



.99F=5 .0001

.999 - -3 .0

.998- .002
-995- .005

.99- .01

.98 -. 02

.95- .05

.90- .10

.80- .20

.50 0- .50

.20 -__ _ __ _1__ _ -. 80

-10- .90

-05- -. 95

.02 - - .98
.01 - .99

-005- .995
-002-_________ .998
.001 - .999

.00011 .9999
-1 0 1 2 3 4 5 6 7 8

z
Figure 4(5). For the Graphical Solution of P (yo, z, F), the Probability That an
END (y) Will Exceed (v0 ) Only in (Ff/10) or Less of the Area (A) When Scale
Distance, r= 1. (This chart is for F= 5. ) The horizontal scale is for the
standardized measure (z) of the area [Eq. (20])
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2.4.3 CLOUD-COVER DISTRIBUTION BY
GRAPHICAL SOLUTION

Begin with: mean cloud cover: Po

0

scale distance: r km

area of floor space: A km 2

(For the sky dome, as the surface observer sees it, the floor space is assumed to

have an area of A = 2424 km 2 equivalent to a circular arca with a 15-nm radius.)

Find

z = In( NA/r)/n 2.

Find the cumulative probability

Po 1 - Po (25)
0

which is also the single-point probability of no cloud. Find its END, y 0 . On each

chart, for each F = 0(1)5, the intersection of the yo-curve with the ordinate line

through z, interpolated as necessary, gives the reading of the probability,

PA (yo" z, F).

For F = 6(1)10 we take advantage of mirror-image symmetry. Enter

Figure 4(4) down to Figure 4(0) respectively, and find the intersection of the curve

of (-y 0 ) with the ordinate line through z. Read the probability PA (y 0 , z, F) on

the right-hand scale.

Or, for F = 6(1)10 we can approach the problem as follows: look for the solu-

tion for PA (-yo, A, (10-F), r) on the (10-F)-chart at the intersection of the

(-yo)-curve with the z-ordinate. Then,

PA (yop A, F, r)= 1 - PA (-yo, A, (10-F), r) . (26)

Example 1: Suppose we wish to find the probability that the single-point lower

10 percent of visibility is to be exceeded in no more than (2/ 10)ths of a region of

area 250 km 2 . The scale parameter is given (say, r = 2 kin). Then

z = In (A/r)/n 2 = 2.98 ,

P 0 = 0. 1, for which y -1.28,

and

F = 2.
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Entering Figure 4(2), (the dashed curves and lines are for the next example) and

following the curve for yo = -1. 28 to the intersection with z = 2. 98, we obtain, on

the left-hand scale, the probability

PA(y o A,F, r) = 0.082.

That is, the answer is 8. 2 percent, only slightly lower than the basic single-paint

probability. If this visibility were not to be exceeded anywhere in the 250 km 2

area the answer [from Figure 4(0)] would have been 6 percent.

Example 2: For Hanscom AFB, MA the RUSSWO 13 gives a mean sky cover of

0. 66 in January, noontime, assume for this example, that the scale distance

r= 1.9 km then,

P= 0.66, Po = 0.34, yo = -0.41
00

For the sky cover, the area A is taken to be 2424 km 2 which, together with

r= 1.9 km, gives

z = In (V 2424/1.9)/tn2 = 4.70. (27)

By finding the curve y = -. 041 in each Figure 4(0) to Figure 4(5) successively,

and following the curve until z = 4. 70, the probabilities of all clear, 1/10 cover,

--- , (5/10)ths cover were found, as shown in the column for estimates by graph

(Table 2). By entering Figures 4(4) down to Figure 4(0) successively at

Yo = 0.41 and following each curve until z = 4.70, the probabilities of 6/10 to full

overcast were found on the righthand scale, as shown in the rest of Table 2. The

RUSSWO figures are shown for comparison. The broken lines for this example

have been plotted in Figures 4(0) to Figure 4(5).

RUSSWO - Revised Uniform Summaries of Surface Weather Observations.
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Table 2. Frequency Distribution of Sky Cover at Hanscom AFB, MA,
January, Noontime, as Given in the RUSSWO. and as Estimated by the
3D-BSW Model. The mean sky cover is P = 0.66, scale distance,

r = 1.9 km. The sky-dome area is assumed to be A = 2424 km

giving z = 4.70

3D-BSW Estimates

Sky

Cover F RUSSWO By Graph By Corputer (Appendix B)

Freq. F req. Freq.

Clear 0 0. 155 4(0) 0. 140 0. 127

1/10 1 0.198 4(1) 0.190 0.191

- 2/10 2 0.247 4(2) 0.230 0.230

-S 3/10 3 0.288 4(3) 0.262 0.266

_S 4/10 4 0.329 4(4) 0.297 0.296

! 5/10 5 0.360 4(5) 0.325 0.330

_ 6/10 6 0.387 4(4) 0.375 0.366

- 7/10 7 0.431 4(3) 0.400 0.401

8/10 8 0.491 4(2) 0.440 0.446

_ 9/10 9 0.537 4(1) 0.51 0.499

1 ia/ia I0 4(0) 0.61 0.605

Overcast 0.462 0. 39 0. 395

2.4.4 CLOUD COVER DISTRIBUTION BY ALGORITHM
AND COMPUTER SOLUTION

Algorithms, previously published 4 with the 2D-BSW model, were found to

approximate the answers of the 3D-BSW model with rinse = 0.005, bias -0. 003.

If limited to z <= 7, the bias is as low as -0. 001. This high degree of accuracy

permits us to use the previous algorithms (Appendix B) for the probability of areal

coverage, PA (yo, A, F, r).

Example 2 (Contd.): Table 2 shows, in the last column, the results of solution by

computer (following the technique described in Appendix B). The values are close

to the values by graphical solution. (The graphical values might be read slightly

differently by another user of the graphs. )
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The difference in the estimates (by graphs or by algorithms) from the

RUSSWO frequencies can be party explained by the fact that the RUSSWO categories

include up to 5 percent additional cover, except for the overcast that includes

breaks of 5 percent. The model, on the other hand, gives probability of

strictly clear, and strictly overcast without breaks. For the same reason each

partial cover should appear slightly less, in cumulative frequency, than in

the RUSSWO, This effect is clearly illustrated in Figure 5. The latter shows

.95 7 .05

.90-~I
0

.80- .20

.50- (100 km)2  .50

-20- -. 80

.10 -. 90

.05 X HANSCOM AFB RUSSWO -. 95
SKY COVER

.02 --. 98
0

.01 1 Ii 099
0 2 4 6 8 10

CLOUD COVER (F)-TENTHS
Figure 5. A Plot of the Cumulative Probability, PR(- F), vs Cloud
Cover (0 _ F 5- 10) in Tenths. The X's are plotted values from the
RUSSWO for Hanscom AFB, January, noontime, with mean 0. 66.
With scale distance determined at r = 1. 9 km, the 3D-I SI, model
provided the 1hree curves for areas (10 km) 2 , 2424 km (sky cover)
and (100 km)Z
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the plot of the RUSSWO sky-cover frequencies (at the X's), the 3D-BSW model prob-

ability curve for the sky cover of area 2424 km 2 , and, in addition, the model curves
2 4 2

for cloud cover over areas of 100 km and 10 km . The additional two curves are

estimates without benefit of verification.

2.5 Line Coverage (PL)

The probability distributions of conditions along a line, or fraction of a line,

were obtained, together with algorithms, for solution by the previous 2D-BSW model.

This exercise is not repeated for the 3D-BSW model, since a more important goal

takes precedence, as described in the following section. For an algorithm solution

of PL(y , s', F, r), (the probability that y0 will be exceeded in no more than
0- /10)ths of the lineof length (s')) based on results with the 2D-BSW model see

Appendix C.

2.6 Line Intervals (PI)

The goal of this section is to estimate the probability, PI(X, s', T, r), that a

condition (X) is the minimized maximum in a linear interval, s' (kin), somewhere

along a longer line of travel of length T (kin). The given parameter is either the

scale distance r(km) or the wavelength A(km) where A = 256 r. in the 3D-BSW model.

In terms of s', T, and r, the following standardized terms are obtained:

s = s'Ir

z = in s/fn 2 (28)

w = in (T/s')/fn 2.

Nith r = 1 or s' = s, the Monte Carlo exercise, previously described, was used to

produce 25, 000 maps (250, 000 would have been better but prohibitive), each with

24 wave formations that produced a field of END- or'y-values throughout the 3D

space. For this exercise the y-values were determined along a line, arbitrarily

chosen to be the V-axis (Figure 2). The line interval (s) was made equal to 2 for

z -1(1)8. The overall line of travel (T) was made equal to 2 z +
", W= 0(l)(10-z), so

that the length of travel (T) varied from a minimum equal to one-half of the single-

unit interval to a maximum of 1024 units of distance. The y-values were generated

along the line, equally spaced at small intervals:

6s = s/N (29)

The number N was arbitrarily set at 20, so that y-values were determined at 21

points along the length of (s).

32



The interval (s) was moved along the line (T) to find the lowest maximum in

that interval. This was done 25, 000 times, yielding a frequency distribution of

y (minmax) for each combination of s and T, or z and u.

Tables 3(-1) to 3(8) show the results for the frequencies that approximate the

probability distribution, PI (yo. z, w), applicable to s' and T when the scale distance

(r) is given, thus:

s' = r.2z for z = -1(I)8
(30)

T = r. 2Z+W) forw = 0(l)(0-z)

2.6. 1 BY GRAPHICAL SOLUTION

Figures 6(-l) to 6(8) show the same results, except that the curves have been

smoothed as deemed desirable, especially for the very high and very low probabilities.

Each figure is for a single value of z. In practice there would need to be a system

of interpolation between the values in the tables or figures.

2.6.2 BY ALGORITHM AND COMPUTER SOLUTION

While the figures could be used directly, it is much more desirable, in fact

imperative, to compose algorithms for the estimates of probabilities. This was done,

with results as contained in Appendix D. The basic equation is of the form:2
y= A (z, w) + B (z, w) . yo + C (z, U)) . yo. After the y - curves were drawn of P vs w,

0 0 0
for each Z = -1(1)8 they were extrapolated beyond (IO-Z) to (12-Z), by eye, to give

a useful extension of the model's application. The additional values of A (i, j),

B(i, j), C (i, j) are included in the tables (Appendix D). Example: Suppose that a

cloud-free interval of 1 km is sought in a flight track of length of 50 kin, when the

sky cover (f) is observed to be (9/10)ths. The Stanford Research Institute (SRI) 7

formula for a cloud-free line of sight (CFLOS) overhead gives

P = l - f(l+ 3f)/4 = 0. 168.n

Accepting this as the single-point probability (P0), then yo = -0. 96.

Suppose, further, that the parameter value is r = 0. 109 kin, orA = 27.6 km (see

below). Using Appendix D, with this value of r, together with s' = 1 kin, T = 50 km,

for which we obtain z 3.21, w= 5.64, the solution to the algorithms gives

PI(s' = I km, T= 50km) = 0.84.

That is, there is an 84 percent probability of having a 1-km window of observation

through the clouds on a 50-km track, when the mean cloud cover is (9/10)ths.

7. Allen, J.H., and Malick, J.D. (1983) The frequency of cloud-free viewing
intervals, Twenty-first Aerospace Science Meeting, 10- 13 January 1983,
Reno, NV., Copyright AIAA Inc.
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Table 3(2). Estimates of the Probability Distribution, PI (y , z = 2, w), of the

Minimized Maximum (y.) in a Linear Interval (S = 2 = 4) Over a Total Line of

Travel (T=2z+ =4 to 1024 units)

Yo

0 1 2 4 5 7 8

-4.0 - - - 0.00014 0.00018 0.00050 0.00090 0.00170

-3.5 0.00018 0.00026 0.00054 0.00098 0.00150 0.00254 0.00514 0.00986

-3.0 0.00114 0.00142 0.00202 0.00278 0.00494 0.00846 0.0166 0.0305 0.0573

-2.5 0.00530 0.00738 0.00926 0.0132 0.0197 0.0345 0.0641 0.119 0.217

-2.0 0.0211 0.0238 0.0300 0.0424 0.0649 0.107 0.193 0.337 0.545

-1.5 0.0609 0.0672 0.0855 0.115 0.170 0.259 0.424 0.642 0.857

-1.0 0.149 0.167 0.199 0.252 0.336 0.478 0.695 0.886 0.9835

-0.5 0.292 0.318 0.361 0.433 0.544 0.705 0.892 0.9832 0.9950

0 0.479 0.504 0.554 0.634 0.750 0.878 0.9753 0.99846 0.99998

0.5 0.672 0.695 0.742 0.807 0.885 0.9615 0.99694 0. 99994 -

1.0 0.826 0.844 0.877 0.9153 0.9601 0.99302 0. 99998 0.99998 -

1.5 0.9243 0.9339 0. 9504 0. 9706 0. 9892 0. 99898 -- -

2.0 0.9744 0.9784 0.9835 0.99246 0.99758 0. 99982 -

2.5 0.99286 0.99474 0.99650 0.99890 0. 99970 0. 99998 -

3.0 0.99838 0.99890 0.99918 0.99970 0.99998 - -

3.5 0.99970 0.99970 0.99974 0.99994 -...

4.0 0.99998 0.99998 0.99998 0.99998 -- - -
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Table 3(3). Estimates of the Probability Distribution. PI (yo, z = 3. w), of the
0Minimized Maximum (yo) in a Linear Interval (S= 2 z 8) Over a Total Line of

Travel (T = 2 8 to 1024 units)

Yo 0

0 1 2 3 4 5 6 7

-4.0 - - - 0. 00006 0.00006 0.00014 0. 00014 0. 00050

-3. 5 0.00002 0.00002 0.00054 0.00078 0.00086 0.00154 0.00354 0.00646

-3.0 0.00134 0.00190 0.00306 0.00462 0.00710 0.0125 0.0221 0.0423

-2.5 0.00414 0.00622 0.00922 0.0152 0.0267 0.0508 0.0963 0. 178

-2.0 0.3184 0.0240 0. 0340 0.0533 0.0902 0. 162 0. 289 0. 484

-1.5 0.0535 0. 067 1 0. 0945 0. 141 0. 224 0. 374 0. 585 0. 823

-1.0 0. 131 0. 165 0.210 0.291 0.433 0. 645 0.855 0.9772

-0. 5 0.264 0.309 0.383 0.494 0. 665 0.861 0.9740 0.99906

0 0.451 0.498 0.582 0.703 0.848 0.9672 0.99782 0.99998

0.5 0. 64:3 0.689 0.765 0.857 0.9463 0.99530 0.99982 -

1.0 0.802 0.836 0. 887 0.9443 0.9889 0.99966 0.99998 -

1.5 0.9132 0.931:3 0.9591 0.9833 0.99778 0.99998 -

2.0 0.9707 0.9774 0.9895 0.99734 0.99990 -

2. 5 0.99150 0. 99378 0. 99790 0.99970 0.99998 -

3.0 0.99798 0.99870 0.99970 0.99982 - -

3. 5 0. 99982 0.99982 0. 99998 0.99998 °

4 .0 0.99998 0.99998 - -
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Table 3(4). Estimates of the Probability Distribution, PI (yo' z = 4. w), of the

Minimized Maximum (y ) in a Linear Interval (S= 2 = 16) Over a Total Line of

Travel (T = 2z W 16 to 1024 units)

0 1 2 3 4 5 6

-4.0 - - 0. 00006 0. 00006 0. 00014 0. 00014 0. 00042

-3.5 - 0. 00010 0. 00018 0. 00026 0. 00066 0. 00 154 0.00342

-3.0 0.00094 0.00186 0.00250 0.00454 0.00746 0.0128 0.0247

-2.5 0.00298 0.00530 0. 00878 0.0168 0. 0327 0. 0611 0. 114

-2.0 0.0135 0.0213 0.0355 0.0624 0. 118 0.212 0.377

-1.5 0.0409 0.0605 0.0977 0. 162 0. 289 0.485 0.731

-1.0 0. 105 0. 149 0.224 0.351 0.553 0.782 0.9507

-0.5 0.222 0.292 0.403 0.576 0.798 0.9502 0.99718

0 0.402 0.481 0.611 0.783 0.9416 0.99474 0.99998

0.5 0.601 0.678 0.797 0.9165 0. 9899 0. 99966 -

1.0 0.773 0.831 0.9133 0.9790 0.99906 0.99998

1.5 0. 897 0. 9286 0.97 12 0. 99586 0. 99998 -

2.0 0. 9633 0. 9780 0. 99434 0. 99982 -

2.5 0. 9897 0. 99422 0. 99914 0. 99998 -

3.0 0. 99754 0.99902 0. 99978 -- -

3.5 0.99978 0.99994 0.99998 - -

4.0 0. 99982 0. 99998 -- -
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Tables 3(7) and 3(8). Estimates of the Probability Distribution,PI(y ; z = 7 or 8, w), of the Minimized Maximum (y ) in a
Linear Interval (S= 2 = 128 or 256) Over a Total Line of Travel
(T= 2z~w= 128 or 256 to 1024 units)

YO w(z =7) u(z = 8)

0 1 2 3 0 1 2

-4.0 0.00006 -

-3.5 0.00006 -

-3.0 0.00006 -
-

-2. 5 0.00006 - 0. 00002 0. 00018 -

-2.0 0.00038 0.00102 0.00174 0.00306 - - 0.00006

-1.5 0. 00098 0. 00482 0.0123 0.0260 - - 0.00010

-1.0 0.00694 0.0256 0.0691 0. 145 0.00046 0.00186 0.00366

-0. 5 0.0327 0. 103 0.248 0.452 0.00374 0. 0146 0.0399

0 0. 116 0.276 0.552 0.824 0.0249 0.0901 0.211

0.5 0.271 0.523 0.838 0.9810 0. 109 0.297 0.581

1.0 0.492 0.755 0.9687 0.99958 0.305 0. 610 0.896

1. 5 0.720 0. 9050 0. 99686 0. 99998 0. 580 0. 856 0. 99074

2.0 0.880 0. 9707 0.99978 - 0.815 0.9648 0. 999"2
2. 5 0. 9625 0. 99318 0. 99998 - 0. 9410 0. 99222 0. 99998

3.0 0.99162 0.99886 -- 0.9858 0.99830 -
3.5 0.99934 0.99982 - 0.99822 0.99978
4.0 0. 99982 0. 99994 0. 99950 0. 99998 -
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Throughout a Total Length of Travel (T = 2 Zw ), Which Become Real
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44



999Z=2 .0001

.999Y-"3 .0

.99- .01

.98- .02

.95- .05

.90- .10

.80 0 .20

.50- .50

.20- 80

.10- 2 .90

.05 -. 95

.02 - .98
.01 -. 99

.005 .995
.002 -. 998
.00, .999

.0001.9999
0 1 2 3 4 5 6 7 8

w

Figure 6(2). The Graphical Solution of 11,(y , z, w), the 'robabilitY

That (y 0)is the Minimized Maximum of y in a Line Interval s (= 2 Z

Throughout a Total Length of Travel (T = 2z w ) Which Become Real
Measures When Multiplied by the Scale Distance, r (km).
This chart is for z= 2: T ranges from 4 to 1024 Units

45



Z=3
.9999 .0001

.999 - i .001

.998 J .002

.995 2 .005
.99 .01
.98 .02

.95 1.05

.90 .10

.80 0.20

.50 -. 50

.20 -. 80

10- -. 90

.05 - -. 95

.02 98

.01 - .99
.005 .995
.002 .998
.001 .999

-4
.0001 l ,"P' 9999

0 I 2 3 4 5 6 7

Figure 6(3). The Graphical Solution of P (y0 z, w), the Probability

That (y 0 ) is the Minimized Maximum of y in a Line Interval s (= 2 z)

Throughout a Total Length of Travel (T = 2 + 
'W ). Which Become Real

Measures When Multiplied by the Scale Distance, r(krr).
This chart is for z= 3: T ranges from 8 to 1024 units

46



.9999 Z4.0001

.999 ' 3 .001

.998 .002

.995 .005
992 -. 01

.98 -. 02

.95 I.05

.90 -. 10

.80 0 20

.50 .50

.20 .80

.10 -2.90

.05 -. 95

.02 .98

.01 -3-.99
.005 - 995
002 -. 998
.001 -. 999

.00010

0 1 2 3 4 5 699

That (y 0) is the Minimized Maximum of y in a Line Interval s (= 2 )
Throughout a Total Length of Travel (T = 2 ZCL)., Which Become Real
Measures When Multiplied by the Scale Distance, r(km).
This chart is for z= 4

47



.9999 Z.0001

'0.1

.999 A C33 -.00
.998
.995- 2 2 .01

.98-

.95- I .05

.90- .10

.80, .20
-0 0 -. 30

-. 40
.50 .50

.60

.20- - 80

1 - 90

.05 - 95

02- -2 - 98
01- 99

.005 - - 995

.002- - 998

.001 - - .999
-3 1

.0001 ,9999
0 I 2 3 4 5 0 I 2 3 4

w w
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3. THE SRI ALTERNATIVE FOR LINE IERVJAL

Allen and Malick 7 of the Stanford Research Institute (SRI) proposed a model in

which the mean length of a cloud-free interval (/i kin) and the mean length of a cloudy

interval (X km) both depend on the probability of the cloud-free line-of-sight

(PCFLOS). If P denotes PCFLOS and Q = 1 - P. then the SRI formula provides

/(P) = (l4P+ 1.7)

for P -< 1/2 (31)

A(P) = (14P+ 1.7)

and

n (P_ -(14Q+ 1.7)

for P > 1/2

A(P) = (14Q+ 1.7).

For a given length (s') within the track length (T), the SRI formula becomes

P' 1 -j1-dxp(-s'/11)4 T ] (M ) for T> (ji-+) (32)

or

P'= P. exp(-s'/A)+Q l -exp(-(T-s')/A)j .exp(-s'/g) for T < (/I+A)s

8
Malick, Allen and Zakanycz, with satellite data on cloud-free and cloudy intervals,

in the month of June, 1978, were able to plot a frequency of clear runs, for lengths

between I and I I km, cloud cover such that single point cloud-free probability is
0. 27. We read the frequencies of run lengths, as shown (Table 4). and found the

best estimates of the scale distance, for each run length in the 3D-BSW model, by

using the model in successive trial-and-error steps. With the resulting geometric

mean value of the scale distance (r = 0. 109 kin), the 3D-BSW model probabilities

were estimated, to compare them with the plotted frequencies, as shown (Table 4).

8. Malick, J.D., Allen, J.H., and Zakanycz, S. (1979) Calibrated analytical
modeling of cloud-free intervals. Proceedings of Conference SPIE
Vol. 195, Atmospheric Effects on Radiative Transfer (1979).
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8
Table 4. Readings, From an SRI Diagram. of the Frequency of
Cloud-free Run Length, When the Single-point Probability of No
Cloud is 0. 27. Included also are estimates of corresponding
scale distance in the 3D-BSW model, and the latter's probability
estimates

3D-BSW
Scale Probability

Run Length Frequency Distance Estimate
(km) (SRI) r (km) r =0. 109 km

1 0.27 0.50 0.22

2 0.25 0.60 0. 18

3 0. 14 0. 10 0. 15

4 0. 12 0. 11 0. 12

5 0.06 0.07 0. 10

6 0.06 0.08 0.086

7 0.025 0.06 0.075

8 0.025 0.06 0.051

9 0.025 0.07 0.051

10 0. C2 0.07 0. 043

11 0.015 0.07 0.036

Geometric mean = 0. 109

The greatest departure of estimate is for 1-km and 2-km run lengths. Actually,

since the single-point probability is taken to be 0. 27, the 1-km cloud-free run should

be significantly less, but was not recorded that way, since the pixels in the satellite

pictures, in 1-km squares, were treated as the smallest elements.

3.1 ZzMmpe of SRI Amtunatin

If, as in the example of Section 2. 6. 2 with PCFLOS = 0. 168, we want to find

the probability of a 1-km clear interval in track of 50 kin, the SRI formula gives
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4 4.05 km

A = 20. 10 km

P(s' = 1 km. T= 50 km) = 0.96.

That is. the SRI formula estimates 96 percent probability of a 1-km interval in

50 km, compared with the 84 percent probability of the 3D-BSW model.

3.2 Comparing the SRI and 3D-BSW Procedures

First, the number of parameters used to characterize a cloud cover differs

between SRI and 3D-BSW. In the SRI formula the amount of cloud cover is essen-

tially the only parameter. In the 3D-BSW model there is the additional parameter

of scale distance, which is found to vary with time of day and time of year. as well

as geographical location and altitude above the ground. Eventually scale distance

may be found to vary with cloud types, although this has not yet been studied. The

data used by SRI are best fitted by the 3D-BSW model when the scale distance is

chosen to be 0. 109 km, or wavelength 28 km. In previous work on clouds, rainfall
and radar echoes, we have found scale distances of an order of magnitude greater.

This has prompted a further comparison of results of the SRI model with the 3D-BSW

model (Table 5). If the nature of the clouds, especially in horizontal persistence,
as represented by the scale distance (r), should differ from the clouds sampled by

SRI, then the estimated likelihood of seeing through breaks in the clouds could differ

dramatically.

Second, the algorithmic solution for the SRI model is simpler than for the

3D-BSW model. However, once the software program is assembled for the latter

procedure, it should make little difference to the computer.

Third, in deriving their equations, the SRI authors assumed independence of

cloud cover between successive non-overlapping segments of the track. In the
3D-BSW model, on the other hand, a field of correlation is deliberately constructed

into the model, with the consequent effect of reducing the likelihood of a clear run
when the mean cloud cover is large (for example, 9/10). This effect is noticeable

in Table 5.
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Table 5. The Estimates of Probability of a Clear Interval of Length s' (kin)
Over a Track of 50 km, When the Sky Cover is 0. 9, for Which CFLOS
Overhead Probability is 0. 168 (scale distance (r) is varied from 0. 05 km
to 5 km)

Interval 3D-BSW Model
Length SRI
sI (kin) Model r=0.05 km r=0. llkm r= I km r=5 km

0.5 0.988 0.977 0.883 0.35 0.32

1 0.96 0.93 0.83 0.34 0.27

5 0.51 0.26 0.45 0.32 0.21

10 0. 17 0.016 0. 16 0.25 0.21

50 km negligible negligible negligible 0.05 0. 13

4. PARAMETER DETERMINATION

The 3D-BSW model depends basically on two parameters. In this sense it

resembles most statistical models, in which the most likely parameters are mean

and standard deviation. In the 3D-BSW model, the mean is used but standard

deviation is replaced by the scale distance (r) or its alternate the wavelength (A).

While the mean or single-point probability is relatively easy to obtain, the

scale distance usually Idkes considerable effort that must make the most of

climatological records. Accordingly, an in-depth description of how these param-

eters are obtained with the 3D-BSW model, is postponed to a later report.

A description of parameter determinations can be found using the 2D-13SW
4 9

model. Gringorten's report on cloud distributions in the vertical finds scale

distance at Bedford, MA sky cover, ranging from 0. 5 km at noon in summer
10

to 10 km at midnight in winter. World-wide, Burger's atlas of sky cover presents

similar values, which show considerable variation with geography. An earlier

paper showed that scale distance is of the order of 1 to 5 km for radar echoes,

4 to 10 km for 24-hr rainfall in New England.

9. Gringorten, I.1. (1982) Climatic Probabilities of the Vertical Distribution of
Cloud Cover, AFGL-TR-82-0078, ADA 118753.

10. Burger, C.F. (1985) World Atlas of Total Sky Cover, AFGL-TR-85-0198,
ADA 170474.
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5. CORRELATIONS

As described above, the BSW model was developed to provide useful simulations

of the- weather, particularly clouds and to provide the probabilities of events or

conditions in 3D-space. The field of correlation coefficients (cc) associated with

the model, while not a goal in itself, is an important indicator of the validity of

the model, and may be used as a tool in achieving the primary goals.

While studies of the spatial field of correlation have not been as numerous as

studies of time-lapse correlation, they have not been neglected. Buell 1 1 found

patterns in the cc's of horizontal winds aloft, as functions of distance between

stations. Bertoni and Lund 1 2 published some revealing diagrams of winter cc's,

in the horizontal, of pressure, temperature and air density from the surface to

altitudes as high as 16 km. For temperature they found horizontal cc's to decrease

to zero at distances of roughly 1,000 nm, then become negative to nearly -0.2,

then back to zero at roughly 2, 200 nm (Figure 7).

5.1 Correlation in the 3D-BSW Model

The cc of the END's at two points is to be found as a function of their separation

(s). The vertical scale is multiplied (see above) by a factor q (= 50, say) to make

the vertical measure cause a decay in correlation more rapid than the horizontal

meas ures.

52 Derivation of the Analytical Expression
for the cc

The END (y), at any point (u, v, w) in a three-dimensional space, is a standard-

ized average of a set of N heights (x i , i = 1, N) of N wave formations, thus:

y= (x -N.x)I/(a x . IdN) (33)

where x is the true mean of all xi , Ux is the true standard deviation of x.. In the

3D-BSW model, the x's have a rectangular distribution of values between 0 and 1,

hence

x = 1/2
(34)

a I/,1l2x

11. Buell, C.E. (1962) Two-Point Variability of Wind. Final Report, AF19(604)-
7282, AFCRL-62-889, Kaman Nuclear, Colorado Springs, Colorado.

12. Bertoni, E.A., and Lund, I.A. (1964) Winter Space Correlations of Pressure,
Temperature and Density to 16 km. Environment Res. Papers (No. 75),
AFCRL-64-1020, ADA 611002, 29 pp.
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In any one wave formation the cc between x 1 and x 2 , that are separated by the

distance s, is given by
-2E(x I x 2 )-x 2

Px 2 (36)

xx x

In the set of N wave formations, the cc between yj and Y 2 " at any two points

separated by distance s, is given by

p y(S) = E (y 1 Y2 )" (37)

A brief manipulation of these equations will reveal that

P y(S) = Pxi(S) •(38)

Hence, to find py (s) it is sufficient to find p x(s), now simply denoted as p(s).

It is convenient, at this stage, to measure all distances in units of the wave-

length (A). That is, in each wave formation the crests will be one unit of distance

apart (A = 1 temporarily).

Without loss of generality we can limit our attention to one wave formation and

think of the wave crests as thin flat sheets of plywood separated by one unit of dis-

tance, all sheets parallel to the V-W plane. In Figure 8 the U, W-axes are in the

flat surface of the paper, the V-axis and the plywood sheets rise out of the paper.

We place the first point (C) along the U-axis at distance x I from the leading

edge of the middle wave, and restrain x 1 to vary uniformly from zero to 1. 0. In

the 2D-BSW model the wave height at C was its phase (xl). In the 3D-BSW model

the locus of the second point (P) at distance (s) from the point C is a spherical

surface of radius (s), represented only by the circle in Figure 8. The height (x 2 )

of the second point at P is given by

x 2 = x I + S. cos 0 + 6 (39)

where e is the angle between the line CP and the U-axis, and where

6 = -1, -2, --- if P is in the first, second, --- right-hand wave,

= 0 if P is in the middle wave (as shown in Figure 8),

= 1, 2, --- if P is in the first, second, --- left-hand wave.
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Figure 8. A Cross-section of a 'ave Formation in the [1-\k Plane to
Illustrate the Relation Between Two Points (C. )) Separated by Distance
(s). The wave phase resembles a flat sheet extending into the V-dimension
(into and out of the paper)

The covariance of (x I , x 2) is obtained by finding the average of ( \9 o
2 2

the sphere of radius s, whose surface area is 47Ts The element of area at 1)

is given by

6A = (s.60).(s. sin0.6 ) (40)

where C is an angular measure around the small circle of radius s. sine, centered

on the U-axis. For integration we must have

0 i n5

0 :_ 2 "
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Hence

1 n 277

E(x- f f f x(x+ s cos 9 +6) .s2 sin9.dx.dO.d.
4,7s x=0 9-0 0o (41)

Integrating with respect to C, and with some terms vanishing,

1 V
2

2E(Xlx 2 ) = + f xdx f 6. sin0 dO. (42)
x=0 0 =0

When 0 -s 1. 6 is restricted to6 = -1. 0, 1. Hence
s 1 01

2
2E(x 1 X2 )=. + f xdx f sin 9.dO + f xdx f (-l) sinOdO

x=O 8 =7-0 2  x=l-s 8=0

where

cos 0 1 = (I -x)/s (43)

cos (7 - 0 2= x/s

which simplifies to

12. E(x X2 ) = 4 - 3s+ 2s 2

whence, by Eqs. (34) to (36)

p(s) = I - 3s + 2s 2  for 0 s . (44)

When 1 < s - 2, then 6 can have two or more values. Or

6 - -2, -1, 0, 1 or 2

The solution for E(x 1 x 2 ) is much longer and involved, but equally valid. It gives,

finally

p(s) = (1 - 3s + 2s ) - 6 (s- 1) 2Is for 1 <s 2. (45)
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Figure 9 is a plot of p(s) vs s, where s is in units of the wavelength. The cc

becomes zero at one-half wavelength, becomes negative with minimum -0. 12,

then zero again at 1, 1.5 and 2. 0 wavelengths. As s increases, the value of p(s)

will oscillate from positive to negative, and will become vanishingly small.

When A = 300 kin, the cc very nearly equals 0. 9 over the unit distance of

1 km. For other A we make cc a function of distance, (s' kin), thus:

p(s')= 1 - 3s + 2s 2 where s = s'/A for 0 S s' _ A . (46)

The value of A that will minimize the root mean square difference between the cc's

of the previous Model B and the 3D-BSW Model, for distances up to the distance

at which Model B yields cc equal to zero, is close to 260 km. We choose to set

A = 28 = 256 kn. The cc will drop to zero at s = 27 = 128 km; the cc at
s' = 1 km will be 0. 9883---.

5.3 Correlation in the Vertical

The climatic records (WBANl0 and TDF14) give information on the amount of

cover (in tenths) at one to four levels, plus the height of the cloud bases. But how

can we derive cc's from this information? The Air Weather Service 1 3 nephanalysis

model 3-D Neph, gives 3-hourly information on cloud presence at some 15 levels

in the atmosphere, from which tables of the frequency distribution of cloud cover,

in layers, have been compiled. The record might be explored to see if cc's also

could be computed or estimated. We are unaware of any published results, and

for the present, we consider cc in the vertical to be unknown. (In the earlier

sections of this report, the value of q= 50 is only a guess.)

The application of the 3-D model to produce clouds in three dimensions should

bypass the cc. The approach to the distribution of cloud cover in the vertical is

to treat a cloud layer, of thickness (h), as though it were an entity with one mean

cloud cover (P 0 ) and scale distance (r) for that layer. The mean cloud cover, in

layers, is obtainable from the 3-D Neph data. It is also obtainable from the TDV 14

information on cloud cover from the ground to height (H) and by using the parameter

G (h, H), previously described. 1

For the present, the scale distance of a layer that has specific lower and

upper levels is taken to be the same scale distance as that determined for the whole

layer from the ground up to the top of the cloud layer.

13. Fye, F.K., Major USAF, (1978) The AFGWC Automated Cloud Analysis
Model AFGWC Technical Memorandum 78-002, ADA 057176,
Hq AFGWC, Offutt AFB, Nebraska.
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5A Probability of Joint Events at Two or
more Stations

The main thrust of this report is aimed at spatial events within a known space,

rather than specific points within the space. However, since the 3D-BSW model

provides the correlation coefficient between points of known uistance apart, it is

possible to obtain the probability of joint events, through application of the multi-

variate normal distribution. 14

The joint probability of two points exceeding a threshold is given by the integra-

tion of the bivariate normal distribution. Of the many ways to calculate this integral,

we prefer to use Eq. (31) of Owen 1 5 along with Algorithm No. 15 of Yamauti. 16

For the joint probability of three or more points, algorithms become increas-

ingly complex. We find it simpler to cumulate the results using a multitude of

simulations.

6. ALTERNATIVES TO THE 3D-BSW MODEL

The 3D-BSW model is basic to the methodology of this report. It succeeds

the previous Gringorten model B and the 2D-BSV model, and is subject to change

or improvement in the future. A few alternatives have been considered, including

multi-dimensional models to include characteristics other than the spatial, such

as time. Instead of sawtooth waves, one model has wedge-shaped waves and

another sinusoidal waves.

6.1 The 4D-BSW Alternative

If simulation is to be realized by the 3D-BSV model in space, coupled with a

process in time, the procedure will call for the stochastic production of a three-

dimensional field of END-values, yt (u, v, w), at each point (u, v, w) for an initial

time (t). Then another field of END-values must be generated stochasticallv, and

linked to the initial field, to give time-related END-values. For every additional

time another field would be generated, with its attendant random numbers. For a

20-year run with a 1-min time step, this would require the random generation of

over 10 million fields.

14. Gringorten, 1.1. (1978) Conditional Joint Probabilities, l:GL-TR-78-0238,

ADA 063817.

15. Owen, D.B. (1980) A table of normal integrals, Commun. Statist. -Simul.
Computa., B9(4):389-419.

16. Yamauti, Ziro, Ed. (1972) Statistical Tables and Formulas With Computer

Applications, Japanese Standards Association.
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To avoid the dilemma just described, the 3D-BSW model has been advanced to

the 4D-BSW model, in which the fourth dimension is devoted to time. The repre-

sentation of time, however, is just one of many possibilities for a 4D-model. As

of this writing, the simulation, by the 4D-BSW model, of a field of values in one,

two, three or four dimensions has been tried successfully. The decay of correla-

tion with distance for one wavelength (A) is given by

p(s) = I - 8s/ + 3s 2/2 for s = s'/A i 1 . (47)

The application of the climatic probabilities has been explored. The areal coverage

probabilities have been found to be similar to the 3D coverage. Much more, how-

ever, needs to be done.

6.2 Sinusoidal-Wave Model

The sinusoidal-wave model has its attractions and may yet be developed

intensively. The primary drawback is the time required to produce synoptic maps.

Wave formations are produced stochastically, as in the 3D-BSW model, but, instead

of Eq. (14) for the wave height (x) at a point (u, v, w), the equation becomes

x = sin 12r(h + 1)/A) . 11)

It differs, also, from the 3D-BSW model in the shape of the curve of correlation

vs distance (Figure 10). For s near zero, the 3D-BSWV correlation decreases nearly

exponentially, while the sine correlation has an exponential-squared decay.

Instead of Lqs. (44) or (45), the formula for cc vs distance becomes

() sin (2w s) for all s =: 0. (49)

While the exponential-type decay of cc serves us well for meso-scale phenomena,

such as cloud and precipitation patterns, the exponential-squared type, which

Figure 10 suggests, may be more appropriate for macro-scale phenomena. There

was a hint of this preference when the earlier Gringorten Models A and B were

studied, in particular for upper-air temperatures.
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7. SUMMARY AND CONCLUSIONS

The 3D-BSW model was developed to estimate probabilities of events (X) in
one-, two- or three-dimensional space. It requires a parameter (A) such that the

correlation coefficient of the END's (y) of X at two stations will reduce to zero at
a separation of (A/2) km between the stations.

Symbolically the algorithms have been written to give:

(a) PA (X, A, F, r), the probability that a threshold condition (X)

will be exceeded only in a fraction (F/10) or less of the area (A),
(b) PL (X, s', F, r), the probability that X will be exceeded only over

(F/10)'s or less of the line of length (s'),

(c) PI(X, s'. T, r), the probability that there is a distance (s') out

of an overall line of travel (T), over which the condition (X) is
not exceeded (that is, the minimized maximum).

The 3D-BSW model has special application to cloud cover. If the threshold
is considered to be the no-cloud condition, then the algorithms provide the prob-
abilities of a clear condition in the fraction (F) of an area (A) or line of length (s').
along with the probability of a cloud-free interval of length (s') in a total line of

travel (T).

Methods for the determination of the parameter (A) or (r) are still to be
published. The data sources are primarily the climatological summaries of hourly

data.

\s might be expected, the fields generated by the model are characterized by
correlation, varying with the distance of separation between points. A vertical

distance, with respect to correlation, is comparable to a much greater distance in
the horizontal. This relationship needs to be studied further.

Paradoxically the determination of the joint probability of a threshold condition
at three or more points is more difficult than finding such probability for a whole

a rea.

The 3D-BSW model may be improved, or replaced, eventually. So far, it has
emerged as the optimum tool for simulating synoptic images and climatic frequencies
of conditions or events in space.
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Appendix A

$imnlg a I- or 2-UimoMW Fiel of EID'

Purpose: To produce stochastically a one- or two-dimensional field or portrayal

of END-values of a weather element using the 3D-BSW model. A

one-dimensional field is produced by keeping two components

(u, v or w) constant, a two-dimensional field is produced by keeping

one component constant.

Comment: Data are not required. Instead a software program, to generate

random numbers, each from a rectangular distribution of numbers

from 0 to 1, is used. Each map or configuration will require the

generation of several dozen random numbers.

Step 0. Choose A: a wavelength, the parameter of the 3D-BSW model.

Choose R0: an initial random number or seed. Note: It has been

found helpful to record this number, since it may be

desired to intensively explore a small part of the

synoptic field in a supplementary investigation.

Choose L: the number of wave formations per map.

Choose (uo. v0 , w0 ) the starting point.

Choose Mu: the number of intervals to the side in the u-direction

Choose M : the number of intervals in the v,-direction.

Choose M: the number of levels in the w-direction.w
Choose 6s' (kin): the interval in the horizontal.

Choose 6w' (kin): the vertical distance between levels.

Choose q: the quotient to "expand" the vertical scale.
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Note: The following description of the method is strongly influenced by the BASIC

language.

Step 1. For I = I to L (for generating the Ith wave formation)

Find Rh , a random number between 0. 0 and 1. 0

Set hI = R h

Step Ia. To find cos Of., cos lot, cos ) 1 .

Find: Ru , Rv , Rw , three random numbers between 0.0 and 1.0

Find: r = R - 112,

r = R - 1/2.

r w = Rw - 1/2.

2 =2 2 2
Find (OP) - r + r + r

U V W

If (OP)2 > 1/4. then reject the three random numbers, and repeat Step Ia.

Else, when (OP)2 = 1/4, find cos ,-1, = r u/(OP)

(IDS = rv/(OP)

cos = rw/(OP)

Continue Step 1, as long as f < L.

Step 2. For m = 0 to M (for the m th level)

Set w = (w0 + mw. 6w')- q.

Step 3. For mv - 0 to M (for the m th point in the V-direction).

Set v = v + m .6s'.

Step 4. For m u = 0 to M (for the m uth point in the U-direction).

Set u = u0 + m • 6s'.

Initialize r xV (U. v, w) = 0.

Step 5. For I = I to L (for the Ith wave formation).

Find D = u. cos if +v *Cos o + w. cos Y I

Fin:l'r = h + D/A + I (where I is a sufficiently large integer,

to make T positive; if BASIC is used, I isn't necessary).

Find xI(u, v, w) = FRA (T) = T - INT(T).

Note: Section 2. 1. 5 describes how to find the wave height (x), tailored to both

FORTRAN and BASIC.
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L

Au! x(u, v. w) t3 r x 0 (u. v, w).
f=I

Continue Step 5 as long as < L.

L
Find y t , v, w) = (1TT]'3- [1 x (u. v, w) - 1/21

e--1

C-)ntin'e Step 4, as l-ng as m u  M u

Continue Step 3, as long as m < M .

Continue Step 2, as hng as m < M .

rthis exercise provides END-values at all specified grid points, in space. Since

this appendix was written, a modification of the 3D-BSW model has enabled us to

use one of its three dimensions to clcsely resemble the O-U process for time,

which will be described in a later report.
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Appendix B

Estiuatiall the Probability Theta Threshold Vaolv WiN be
Exceeded in OAly (F/1O)ths of a Sqire Area (A)

Purpose: To estimate PA (yo, A, F. r), the probability that a threshold value

of X, or its END (y), will not be exceeded, ex,-e.PL in (F/ 13)ths or

less of the square area (A); scale distance is (r).

Algorithm:

Step 0: Begin with: threshold (y ) jr the single-point cumulative

probability (P ) o. X, plus scale distance (r kin), plus area

of floor space (A km 2).

Step 1. Compute entries y0 (if necessary) and z.

Find z = (in %]Afr)fln 2.

If given P 0 find y. The recommended formula is the NBS aoproximation:

Yo k[t - (a0  4- a 1 . t)/(l+bIt + b 2 t2 )] (B1)

where

a 0 - 2. 30753

a 1  0.27061

b= 0. 992291

b = 0. 04481
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and where

k = -1, t = 4(fn 1/p 2 ) fo r p = Po f< 1/2

k = 1, t = q(fn 1/(1 - p)2 ) for p = P > 1/20

Step 2. To solve for the probability of the fractional cover (F/ 10):

Note: In this algorithmic solution. F need no longer be an integer.

If 0 5 F 5- 5, substitute F' -F, Yo' = Yo.

If 5 <F ! 10, substitute F' = 10-F, yo = -v
The END, y(F'), is obtained by interpolation between y I INT(FI)

andy IINT(F')+ 1 } Both of these latter values are obtained by

y(F') = cy + V (132)

where , fP, -y, 6 are solved by the equations in Table BI, supported

supported by Tables B2 and B3.

The interpolation procedure is accom-ished by

y(F') = yIINT(F')j + IF' -INT(F') 1  IyINT(F')+ I]-y [INT(F')j. (133)

Find the probability, P corresponding to the End, y(FP).

The recommended formula is the NBS approximation

2 c33 + 4)4]-1
P= f+m [20l+c 1 X+C 2 x +C 3 X +c4 X ) 4 (B4)

where

c = 0.196 854

c= 0.115 194

c 3  0.000 344

c 4 =0.019 527

xz Iy(F') I

E= 0, m= I for y(F') <= 0

1= 1, m= -1 for y(F') >0.

For 0-5 F < 5, set PA(yo, A, F, r)= P

For 5 <F !- 10, set PA(yo, A, F, r)= I-P.
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Table B2. Constants for the Expression
( ) in Table BI

n a b c
n n n

0 0. 0900 0. 0000 0. 00

1 -0.0071 0.0086 0.53

2 -0. 0205 0. 0097 0.52

3 0. 0229 0. 0045 0.64

4 -0.0517 0.0224 0.45

5 0.0260 0.0087 0.71

Table B3. Constants for the Expression (6) in Table BI

m= 1 m=2

F d(F)m f(F)m g(F) m  d(F)m f(F) m  g(F) m

0 0. 1420 -2. 4090 -0.44 0. 1908 -3. 8406 -0.56

1 1. )686 -2. 2854 -0.46 1.87 10 -4. 2412 -0.55

2 1. 9440 -2. 7842 -0.41 3.0540 -4. 4752 -0.39

3 2. 2560 -2. 7356 -0.40 3. 3960 -4. 5228 -0. 50

4 2.0328 -2. 2910 -0.41 2.0390 -2. 5702 -0.75

5 1.2356 -1. 2300 -1.30 1.6124 -1. 5434 -1.51

The following BASIC program (filename B:PYOA FR. BAS) estimates PA (v 0 A, Y. r).

It requires the inputs:

scale distance, entered as R (kin),

area of floor space, entered as A (km 2

fraction of area, entered as F,

the cumulative probability of the threshold (X) entered as P 0
0

and yields the output (P), the probability of the event.
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10 REM B:PYOAFR.BAS ON ORINGORTEN DISK NO. 4. 18 DEC 1986

20 REM TO FIND THE PROBAEILITY THAT X. OR ITS END (Y,.) WHOSE CLIMATIC FREOUENCY

IS PO. WILL BE EXCEEDED IN 'F.lO.)THS OR LESS OF AREA A: PARAMETER IS SCALE

DISTANCE (R)
30 REK PO HEREIN WILL BE CUMULATIVE PROBABILITY

40 REM THE FOLLOWING ARE CONSTANTS FOR THE ALGORITHMS

50 AO a 2.30753
60 Ai = .27061
70 B1 x .99229
o0 E2 = .04481
90 C1 = .196854

100 C(2= .115194
110 C3 = .000344
120 C4 x .019527

121 OPTION BASEO
130 DIM AN(6), BN(6). CN(6)
140 DIM DF"2.6)
150 DIN FFM(2.6)
160 DIM GFM(2.6)

170 DIN RD(2.2)
180 FOR I z 0 TO 5
190 READ AN(I). BN(I . N(I)
200 NEXT I
210 DATA 0,0.0.-.0071. .0086 . .53. -. 0205. .0097.
220 DATA .0229. .)045. .64. -. 0517. .0224. .45. .0260. .0087. .71
230 FOR M I TO 2
240 FOR J = 0 TO 5
250 READ DFM(M,3). FFN(M.T), GFMIM. 3)
260 NEXT J
270 NEXT M
280 DATA .1420. -2.4090. -. 44. 1.0686. -2. 2854. -. 46
290 DATA 1.9440. -2.7842. -. 41. 2.2560. -2.7356. -. 40
300 DATA 2.0328. -2.2910. -. 41. 1.2356. -1. 2300. -1.30
31, DATA . 19(8. -3. d406. -.56. 1.8710. -4. 2412. -. 55
320 DATA 3.0540. -4.4752. -. 39. 3.3ib0. -4.5223. -. 50
330 DATA 2.0690. -2.570-. -.75, .61'24. -1.5434. -1.51
340 REM STEP 0 FOR THE INPUTS

350 INPUT "SCALE DISTANCE =":R

360 INPUT "AREA=':A
370 INPUT "FRACTION =":F
380 INPUT "PO0":PO
390 REM STEP 1 TO TRANSFORM THE VARIAELES INTO ALGORITHM ENTRIES
400 REM TO CALCULATE 2
410 TEMP = SOR(Al 'R
4f:0 Z = LOG(TEMP).LOG(:
430 REM TO CALCULATE Y(, FR:M P,

440 IF Pi)*._ THEN 486'
450 K = -1
460 T = SCR LOG(1;P',
47:, GOTO 50C.

480 K=1
490 T = SOR(LO03I1 I-P(',
500 YO = I*(T - A: + AlIT:! I+EI'T + E.-*T

510 REM TC SUESTITUTE Y(F=-Y AND FF=11,-F WlHEN F
520 IF F 5 THEN 5,,.
531: FP = F
-c54 YOP YO
550 GOTC _=.()

5 -'b FP = 16-F
574,) YOP : -Y(:
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580 REM STEP 2 T? CALCULATE THE END (Y OF THE DE IREf PROEABILITY

590 IF ZMl THEN 650
60 REM FOR THE CASES WHEN Z'l
610 ALPHA = YOP + (.-06*EXP(.8*Z)-.0 (3 * FP - 5

620 YP = ALPHA

630 GOTO 1'41i
640 REM FOR THE CASES WHEN Z=:I

650 IF Z::7 THEN ';C(

660 REM FOR THE CASES WHEN 1=::='7: FIRST WE FIND BETA

670 FIRST ( .9981 4 .OKII*EXP' .E"' Z Y OF
680 N= 5 - INT(FP)

700 TEMP = EXP(CN(N)*')
710 SECOND = (AN(N)+BN(N)*TEMPI*IFP+N-6)
720 SUM = 0
730 IF N = 0 THEN 79-)
740 NMINI = N - I
750 FOR I = 0 TO NMINI

77". SUM = AN(I + BN(1)*EXP(CN(I tZ! 4 SUM
80' NEXT I

7"?( EETA = FIRST 4 SE:ON1D - SUM
80' REM TO FIND THE GAMMA TERM
810 IF " =.5.5 THEN 88.
820 IF FP : THEN 88:,

830 IF YOF:2.5 THEN 88K-'
840 REM FOR THE CASE WHEM S 2.'. :> . y:'p:2.s
850 GAMMA = (. 0"1,*EXP '-'* ,-. . i

860 YP = BETA + GAMMA
870 GOTO 1410
880 YP = BETA

8q0 GOTO 141K
900 REM FOR THE CASE WHEN Z'.7
910 REM WE FIRST FIND Y(Z>7,

920 FIRST = (.9q81+.-orI1EXPI -. *YCP
930 N = 5 - INT(FPi
950 TEMP : EXP(CNN)*#7

960 SECOND= AN(N; + BN(N)*TEMP)*fFP*N-..
970 SUM = 0
980 IF N=O THEN 1040
990 NMINI = N-I
1000 FOR I 0 TO NMINI
1020 SUM= SUM + AN(1) + BNfI)*EXP'CNI*-,
1030 NEXT I
1040 BETA = FIRST +SECOND - SUM
1050 IF FP)4 THEN 1100
1060 IF YOPC2.5 THEN 1100
1070 GAMMA = (.010*EXP'6.65 ,- .712", .5-.,*,:F,:-.:S=FP
1080 YP7 = BETA + GAMMA

1090 GOTO 1110
1100 YP- = BETA
1110 REM FOR THE ADDITONAL TERMS WHEN 2 -'
1120 IF FP=5 THEN FP=4.999'q9
1130 REM FP SHOULD BE JUST LOW ENOUGH TO AVOID ROUNDOFF TO 5 BY THE COMPUTER
1140 M = INT(Z-5.5)
1150 REM M IS EITHER I OR 2
1160 RD(1.1) = Z-7
1170 RD(2,1) = .5
1180 RD(2.21 =
l1qA REM BECAUSE F MAY NOT DE A WHOLE NUMBER THE FOLLOWINC PROCELURE IS USED

120' 7LfjWER = INT(FPI
1210 FUrPER = FLOWER i
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1220 FOR FI = FLOWER TO FUPPER
1240 REM FOR THE CORRECTIVE TERM WHEN Z- 7
1250 TERM = YP7
1260 IF M=2 THEN 1310
1270 REM THE CASE WHEN M=1
1280 TEMP = EXP(GFM(I,FI)4YOP)
I20 TERM = TERM + (DFM(I.FI)+FFM(1.FI)*TEMP)*RD(1,l)
1300 GOTO 1360
1310 REM THE CASE WHEN M =
1320 FOR J = I TO 2
1330 TEMP = EXP(GFM(J,FI)*Y0P)
1340 TERM = TERM + (DFM(J,FI)+FFM(J,FI)*TEMP)*RD(2, J)
1750 NEXT J
1360 IF FI = FUPPER THEN 1390
1370 YFIRST = TERM
1380 NEXT FI
1390 YSECOND = TERM
1400 YP = YFIRST + ,FP-FLOWER)*(YSECOND - YFIRST)
1410 REM CONTINUE
1420 IF F 5 THEN Y = -YP
1430 IF F=:5 THEN Y = YP
1440 REM STEP 3 TO CALCULATE THE DESIRED PRODABILITY
1450 IF Y O THEN 1500
1460 L = 0
1470 M=l
1480 X=-Y
1490 GOTO 1530
150: L = 1
1510 M -1
1520 X =Y
1530 DEN = (1+CIr*X+C2*X"2+C3*X"3+C4*X"4)4
1540 P = L + M!(27*DEN)
1550 PRINT "FOR FRACTIONAL COVER F=";F;", CLIMATIC PROBABILITY PO=";PO; "IN AR]
A=".;A,." P="; P

1560 GOTO 380
1570 END
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Appendix C

Estimating the Probability That a Threshold Value (ya) Wil ie
Exceeded in Only (F/IO)ths of a Line Length (s)

Purpose: To estimate PL (y0 . s', F, r), the probability that the threshold or X,

or its END (y ), will not be exceeded, except in (F/ 1O)ths or, less

of the line of length (s'); scale distance is given (r).

Algorithm:

Step 0. Begin with:

Single-point cumulative probability (Po) or its END (y),

scale distance (r kin) jr wavelength (A = 256 r kin), line

length (s' kin).

Step 1. Compute the entries: y 0 (if necessary), and z.

Find z = ln(s'/r)/ln 2. (C1)

Find y0 ; the recommended procedure is in Appendix B.

Step 2. To solve for the Probability of the fractional cover (F/ 10)ths of

the length (s'): Note: F is not necessarily an integer.

For 0 S F !_ 5, substitute F'= F, y =y,

For 5 < F l 10, substitute F' = 10-F, y o
Fiid, 7l, q2"

where

S Co ((2)77i =A n +BnYo
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where

A n = an +bn. exp(c n.z) (C3)

B n = dn+ fn. exp(g nz)

C = hn + q exp(r .z) forz >6

= 0 forz 56

where

n = INT(F') for i = 1

= INT(F') + I fori= 2.

and where an, b b .. nrn are given in Table C1 for n = 0(1)5.

Then find y(F') = (77 - q 1) " IF' - INT(F')}.

Find P corresponding to v(F').

The recommended formula is the same as in Appendix B.

For 0 1 F = 5. set PL (Y., s', F, r) = P

For 5 < F P ), set PL (v s', F, r) I -P.
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The following BASIC program (filename B:PYOSPER. RAS) estimates

PL(Yo. s'. F. r). It requires these inputs:

scale distance, entered as R (km),

line length, entered as SP (kin),

fraction of the line, entered as F (tenths),

the cumulative probability for the threshold value (X), entered as PO,

and yields the output (P), the probability of the event.
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10 REM B:PYOSPFR.BAS ON GRINGORTEN DISE NO.4. 18 DEC 1786

15 REM
20 REM THE PROBABILITY THAT X. OR ITS END (YO) WHOSE CLIMATIC FREOUENCY Iz PO.
WILL BE EXCEEDED IN (F/10)THS OR LESS OF A LINE (SP KM): PARAMETER IS SCALE
DISTANCE (R
30 REM PO HEREIN MILL BE CUMULATIVE PROBABILITY
40 REM THE FOLLOWING ARE CONSTANTS FOR THE ALGORITHMS
50 AO = 2.30753

60 Al = .27061
70 B1 = .99229
80 B2 = .04481
90 CI = .196854
100 C2 z .115194
110 C3 = .000344

120 C4 = .019527
130 DIM AN(6).BN(6).CN(6)
131 DIM DN(6). FSN(6)i. GN(6)

132 DIM HNtb).QN(6).RN(6)
180 FOR I = 0 TO 5
190 READ AN(I).BN(I).CN(Il
191 READ DN(I),FSN(I).GN(I)
192 READ HN(I),0N(I) ,RN(I)
200 NEXT I
210 DATA .03,-.0366,.51.1.,04 7.44E-4,.8.8.Q6E-:.-1.4E-5.l.02
220 DATA .0346. -. 0366,. 47.1.0014.5. 08E-4.. 1. E-3, -3. 7E-7, 1.46
230 DATA .0272,-.0283.4. 1.0054.2.7E-4..95.2.E -3..2.48E-8.1. 81
240 DATA .')207. -. 0213..4. 1. 0058. 2. 74E-4. . 5. -9. 76E-4. -K. 34E- 12..7
250 DATA . 09 01, -. 0103.. 44.1.00-I.3. 2E-4. .l . -2. 4E-3. -7. 1E-17. 4. 17
260 DATA .0000..0000. .00.1.0022.3.53E-4. .3 2. . )C0. .) '1'. 0t)
340 REM STEP 0 FOR THE INPUTS
350 INPUT "SCALE DISTANCE=".R

360 INPUT "LINE LENGTH=":SP
370 INPUT "FRACTION OF LINE IN TENTHS=":F
360 INPUT; "P0=:PO
390 REM STEP I TO TRANSFORM THE VARIABLE INTO ALGORITHM ENTRIES
400 REM TO CALCULATE
410 TEMP = SP/R

420 Z = LOG(TEMP)/LOG(2)
430 REM TO CALCULATE YO FROM PO
440 IF PO>.5 THEN 480
450 K = -1

460 T = SOR(LOG(IiPO-2))
470 GOTO 500

480 K = 1
490 T = SOR(LOG(I/(I-P0)'2l
500 YO = K*(T-(AO+AI*T) (I+EI*T+E*T >
510 REM TO SUBSTITUTE YOP = -YO AND FP = 1O-F WHEN F'.5
52 IF F.5 THEN 560
530 FP= F
540 YOP = YO

550 GOTO 580
560 FP = 10-F
570 YOP -YO
580 REM STEP 2 TO CALCULATE THE END (Y) OF THE DES(RED PRODAEILITY
589 REM WHEN FP=5 IT SHOULD BE LESSENED BY A TRIFLE. TO AVOID A ROUNDOFF OF ERRO
R IN BASIC
590 IF FP = 5 THEN FP = 4.9 iqi9

600 FLOWER = INT(FP)
610 FUPPER = FLOWER + I
620 FOR FI = FLOWER TO FUPPER
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6 30 I = FI
640 A = AN(I) + EN(I).EXP(CNII)4Z)
650 B = DN(I) +FSN(I)'EXP(GN(I).Z)
660 IF Z='6 THEN 700
665 REM WHEN Z'1-6
670 C = HN(I) + ON(I).EXP(RN(I)*7)
690 GOTO 710
700 C=O
710 IF FI = FLOWER THEN K=1
720 IF FI = FUPPER THEN K =
730 ETA(K) = A + B.Y0P + C*YOP"2
740 NEXT FI
745 YP z ETA(1) + (ETA(2) - ETA(II))(FP-FLOWER)
750 IF F'15 THEN Y = -YP
760 IF F=(5 THEN Y YP
770 REM STEP 3 TO CALCULATE THE DESIRED PROEABILITY
780 IF Y) THEN 830
790 L 0
800 M = 1
810 X = -Y
820 GOTO 870
830 REM WHEN Y .O
840 L=l
850 M=-I
860 X=Y
870 DEN = (I+CI.X+C2*X"2+C3.X,3+C4*YX.4) ,4
880 P = L + M/(2*DEN)
890 PRINT " THEN P"- P
900 GOTO 3BO
1000 END
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Appendix D

Estimating the Proebablity That a Thresheld Value (yo)
Will Net be Exceeded Over Any Lime of Lee* (')

Within a Lener Lie of TravTl M

Purpose: To estimate PI (yo. s', T, r), the probability that (y ) is the lowest

maximum END in a linear interval (s' kin) somewhere along a line of

travel of length (T km); scale-distance parameter is r km.

Algorithm:

Step 0. Begin with

Single-point cumulative probability (Po) of a threshold condition

(X). with corresponding END (yo)

Scale distance (r km);

Line interval (s' kin), and;

Overall line of travel (T kin).

Step 1. Compute entries: yo" z; w, as needed.

Find z = ln(s'/r)/n2;

w = ln(T/s')/ln2.

(Note: Neither z nor w need be an integer.)

Find y corresponding to P. The recommended formula is the same as in

Appendix A.

Step 2. To solve for the probability:

PI(yo. z, w) = P(y)
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find y (yop z. w) by interpolation:

Y(yo, zw) = y(y 0 z 1 wU). (1-FRA(z}). (1-FRA(w))

+ y (y0 . ze, Wu) (1-FRA(z)). (FRA(W))

+ Y (yo Zu" )" (FRA(z)). (I-FRA(u))

+ Y (yo, zu w )" (FRA(z)). (FRA(w))

whe re

z = INT (z)

z = INT (z) + 1

U) = INT (W)

Wu = IN T (w) 1

FRA(z) z - INT (z)

FRA(w) = w- INT (u)

and where

Y(yo , zip w ) = A (i, j) + B(i, j)yo C (i, ) Yo 2

where A (i, j), B(i, j), C (i, j) are given in Tables Dl, D2, D3

respectively.

Lastly, find P corresponding to y (y; z, w). The recommended formula is the same

as in Appendix A.

Set PI(y , s', T, r) = P
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Table Dl. A(i, j) for Given z i., .j

zi/w) 0 1 2 3 4 5 6 7 8 9 10 11

-1 0.01 0.02 0.025 0.06 0.13 0.25 0.46 0.82 1.35 2.09 2.95 3.62

0 -0.01 0.01 0.05 0.12 0.23 0.43 0.75 1.26 2.09 3.09 4.50

1 -0.02 0.02 0.09 0.20 0.40 0.72 1.22 2.02 3.14 4.79

2 -0.05 0.02 0.14 0.34 0.66 1.18 1.97 2.95 4.52

3 -0. 125 -0.01 0.20 0.51 1.03 1.84 2.84 4.26

4 -0.25 -0.05 0.29 0.81 1.55 2.52 3.93

5 -0.45 -0.14 0.37 1. 11 2.01 3.30

6 -0.76 -0.31 0.39 1.23 2.29

7 -1.23 -0.62 0.13 0.94

8 -1.91 -1.28 -0.78

Table D2. B(i, j) for Given z i , w).

z./w. 0 1 2 3 4 5 6 7 8 9 10 11

-1 1.00 1.00 1.00 1.00 1.01 1.03 1.06 1.12 1.24 1.44 1.65 1.68

0 1.00 1.00 1.00 1.01 1.02 1.06 1. 11 1.26 1.54 1.85 2.44

1 0.99 1.00 1.00 1.02 1.06 1.12 1.24 1.50 1.96 2.72

2 1.00 1.01 1.01 1.06 1.10 1.20 1.51 1.84 2.55

3 1.00 0.99 1.04 1.11 1.23 1.50 1.83 2.39

4 1.01 1.02 1.10 1.23 1.42 1.80 2.42

5 1.03 1.07 1.20 1.44 1.77 2.39

6 1.10 1.15 1.39 1.71 2.23

7 1.21 1.33 1.63 2.20

8 1.45 1.65 2.00
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Table D3. C (i. j) for Given z., wj

z./w) 0 1 2 3 4 5 6 7 8 9 10 11

-1 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.02 0.03 0.00

0 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.05 0.08 0.15

1 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.04 0. 10 0.21

2 0.00 0.00 0.00 0.01 0.01 0.00 0.05 0.08 0.17

3 0.00 0.01 0.01 0.02 0.02 0.04 0.07 0.13

4 0.01 0.01 0.01 0.02 0.03 0.07 0.15

5 0.01 0.01 0.02 0.03 0.07 0.16

6 0.00 0.00 0.03 0.05 0. 14

7 0.00 0.00 0.05 0.18

8 -0.03 -0,08 0.04

The following BASIC program (filename B:PYOSPTR. BAS) estimates PI (y 0 s', T, r),

It requires these inputs:

(a) the single-point probability of exceeding the threshold (X), entered

as POP. It is changed by a step in the program to cumulative

probability (PO).

(b) scale distance, entered as R (kin).

(c) the overall length of the line of travel, entered as T (kin),

(d) the length of the window, entered as SP (kn),

and yields the output (p), the probability of the event.
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I1 REM B:PYOSPTR.EAS ON GRINGORTEN DISK NO.5. 10 MAR 1,;87
II PRINT
20 REM BASIC PROGRAM FOR APPENDIX D OF REPORT ON 3D-ESW MODEL
.30 REM TO FIND THE POP!ABILITY OF THE LOWEST MAXIMUM (YC') IN AN INTERVAL (S'

WITHIN A LARGER INTERVALIT)
40-DIM A(i .14)
50 DIM B(10.14)
60 DIM C(1).14)
70 FOR I 0 TO 9
80 Z = I I
85 TWMIN'. z 12-Z
90 FOR J = 0 TO TWMINZ
10 READ A(I,J)

110 NEXT J
120 NEXT I
121 DATA .01,. 02.. 025,. 06,. 13,. 25, 4,b, .82.1.35. 2.09. 2.95.3.62,5.32.7.2Q
122 DATA -. 01,.01..05,.12,.23,.43.. 75,1 . 26, 2. 05. 3. .4.5.16.26,6.97
123 DATA -. 02, .02, .09, .2,.4,.72,1.22. 2. 02. 3.1 44.796.62.6
124 DATA - 05, .02, .14, .34 .66,1.18, 1. 97, 2. ?5. 4. 52, 6. 33, 8. 65
125 DATA - 125, -. 01, . 2, 5., 1. 1)3. 1. 64, 2. 84.4. 26, 6.3. 7.74
126 DATA -. 25. -. 05,.29, .81, 1. 55. 2.52 .3. 93. 5.82, 8. 16
127 DATA -. 45, -. 14,. 37, 1. 11, 2. 01. 3.3, 5. 03, 7.91
128 DATA -.76, -. 31, .3',.3, 2."? ,45,5.-7
129 DATA -1. 23,-.62,.13,.94.1.9.3. 16

130 DATA .91.-1.28. -.78,-,097..54
131 FOR I = 0 TO
140 Z = I-I
145 TWMINZ 12- Z
150 FOR J = 0 TO TWMINZ
160 READ E(I.J)

170 NEXT J
180 NEXT I
190 DATA 1.1,1,1.1. 01.1.03.1.6,1.12. 1.24.1.44.1.65.1.68,2.51 3.3
191 DATA 1,1,1,1. 01,1.02,1.6, 1.11,1.26, 1.54,1.85,2.44.3.13.3.0 4
192 DATA .99.1,1,1.) 2,1.06, 1.12,1.24,1.5,1. 96,2.72.3.41,4. 14
193 DATA 1,1.01.1.01, 1. 06. 1. 10, 1.2,1.51,1.84,2.55,3.34.4.35
194 DATA 1..99.1. 04.1.11,1.23, 1.5,1. 83, 2. 359, 3. 3,3.61
195 DATA 1. 01, 1. 02, 1.1, 1. 23, 1.42, 1. 8,2.42.3.31.4.38
196 DATA 1. 03, 1. 07,1. 2, 1. 44,1. 77, 2. 3 9. 3. 27. 4.97
197 DATA I. I, 1.15,1.39, 1. 71,2.23, 2. 71 .91
198 DATA I. 21,1.33,1.63,2.2,2. 87,3.?9
199 DATA 1.45,1.65, 2,2.52. 3.6
200 FOR I = 0 TO 9
210 2 = -1

220 TWMINZ = 12-7
230 FOR J 0 TO TWMINZ
240 READ C(I,J)
250 NEXT J
260 NEXT I
270 DATA 0,0,(,0,0, ,.01, .01,0, .01. .02,. (3,0..12..
271 DATA 0, 0, 0, ,0. 01,. 01.. .02, . 95, .08, .15,. 23, .19
2"72 DATA 0,,0, .01,. 01,. 1,. 02,. ,. ,. 21,. 27. .35
273 DATA 0, 0,0, .01, 01. 0, .05,. 08, . 17, . 27,. 39
274 DATA 0, .01, .01,. 02, . ('2, . :'4, .07, . 13, . 25, . 25
275 DATA .01..01-.01,.02,. 03,.07,.15, .27, .4

276 DATA .01.. 01,. 02,. 03, .07, 6. , . 29,.5
277 DATA 0, 0, .03, .05,. 14,. 21, . 45
278 DATA 0, 0,.05..18,.32 .6
279 DATA -.03,-.08,.04,.14,.75
300 INPUT "PROBABILITY OF CLOUD COVER": POP
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301 REM PROBABILITY OF CFLOS IS PO WHERE
310 PO = I - POP

VAL (S') 320 REM TO FIND TO. THE END OF P6

330 GOSUE 700
340 INPUT "SCALE DISTANCE=R":R
350 INPUT "OVERALL DISTANCE=T" :T
359 LIMIT = 256#R: IF TLIMIT THEN LIMIT = T
360 PRINT "LIMIT WINDOW (SP) TO"; (T'2 13): "SP:":LIMIT
361 INPUT: "WHEN SP=":SP
370 S = SP!R
380 Z= LOG(S)/LOG(2)
381 IF 2)-I THEN 384
382 REM WHEN Z :.-1
393 Z=-1
384 REM WHEN Z)-l
385 IF Z<9 THEN 390
386 REM WHEN Z)8
397 PRINT " NO ANSWER; ALGORITHM WAS NOT EXTENDED FAR ENOUGH.
388 GOTO 361
390 OMEGA s LOG(T/SP)/LOG(2)
400 ZL = INT(Z)
410 ZU = INT(Z) +1
420 UL = INT(OMEGA)
430 WU = UL + 1
435 REM FOR THE FIRST TERM (Yi)
440 ZP= ZL
450 UP = UL
460 GOSUB 810
461 FRAZ = Z - INT(Z)

462 FRAN a OMEGA - WL
470 TI a YP*(I-FRAZ)*(1-FRAW)

480 REM FOR THE SECOND TERM (Y2)
4?0 ZP = ZL
500 uP = RU
510 GOSUB 810
520 Y2 = YP*(I-FRAZ) *(FRAN)
530 REM FOR THE THIRD TERM (Y3)
540 ZP = ZU

550 UP = UL
560 GOSUB 910
570 Y3 = YP*(FRAZ)*(i-FRAW)

600 REM FOR THE 4TH TERM (Y4)
610 ZP = ZU
620 uP z RU
630 GOSUB 810

640 Y4 = YP?(FRAZ)#(FRAW)
650 Y = YI+Y2Y3Y4
660 GOSUE 960
670 PRINT " THE PROBABILITY =":P
675 GOTO 361
700 REM THE SUBROUTINE TO FIND TO GIVEN PO
701 AO a 2.30753
702 At a .27061
703 21 a .99229
704 B2 a .04481
710 IF P05.5 THEN 760
720 REM WHEN PO =(.5
730 TP a SOR(LOG(I/PO^2))
740 K s-I
750 GOTO 790
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760 REM WHEN POD.5

770 TP = SOR(LOG(Ii 1-P0)'2)

780 K = 1
790 YO = K*(TP-(AO4AliTP.).U(1.IfTP+E2TP':n)
800 RETURN
610 REM SUBROUTINE TO FIND THE END (Y) FOR GIVEN Z. OMEGA AND Y'
820 I = ZP+I
830 J= WP
840 YP = A(I.J) + B(I,J)*YO + CtI,J)*Y0'2
650 RETURN
96O REM SUBROUTINE TO FIND THE PROBABILITY P CORRESPONDING TO Y
8 0 Ci = .196e54
680 C2 = .115194
890 C3 = .000344
900 C4 = .019527
910 X = ABS(Y)
915 DEN =(I + Cl*X+C2*X 2 C3*X'3 + C4*X 4) 4
920 IF Y<0 THEN 980
930 REM WHEN Y=O
950 L = 1
960 M =-1
970 GOTO 1010
980 REM WHEN Y'O
990 L = 0
1000 M = I
1010 P L + M*(.5'DEN)
1015 RETURN
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